

INHALT

2710.	HALA-PRINZIP
06	Leistungen und Produkte
08	Kompetenzen
10	Ihr Partner-Team
12	IATF Zertitifierung

A WÄRME MANAGEMENT 14 Total-Thermal-Management 16 Heat Pipe Module

16	Heat Pipe Module
18	CFD Simulation

B W	ÄRMELEITMATERIALIEN			
_	Material	Bezeichnung	isolierend	Leitfähigkeit
21	1 GAP-FILLER			W/mK
••••••	Silikon	• • • • • • • • • • • • • • • • • • • •	•••••••••••••	••••
22	Silikon Gap-Filler Pad / weich	TGF-M-SI	· · · · · · · · · · · · · · · · · · ·	2,5
23	Silikon Gap-Filler Pad / weich	TGF-R-SI	_	3,0
24	Silikon Gap-Filler Pad / weich	TGF-U-SI		4,5
25	Silikon Gap-Filler Pad / weich / LV	TGF-VS-SI		5,0
26	Silikon Gap-Filler Pad / weich / LV	TGF-XS-SI	_	6,0
27	Silikon Gap-Filler Pad / weich	TGF-Z-SI	-	11
28	Silikon Gap-Filler Pad / sehr weich	TGF-BXS-SI		1,2
29	Silikon Gap-Filler Pad / sehr weich	TGF-HUS-SI	_	1,8
30	Silikon Gap-Filler Pad / sehr weich	TGF-JUS-SI	_	2,0
31	Silikon Gap-Filler Pad / sehr weich / LV	TGF-JXS-SI	•	2,0
32	Silikon Gap-Filler Pad / sehr weich /	TGF-MXS-SI	•	2,4
	optional glasfaserverstärkt	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
33	Silikon Gap-Filler Pad / sehr weich	TGF-LSS-SI		2,5
34	Silikon Gap-Filler Pad/sehr weich	TGF-MUS-SI		2,5
35	Silikon Gap-Filler Pad/sehr weich	TGF-RSS-SI		3,0
36	Silikon Gap-Filler Pad/sehr weich	TGF-TSS-SI		3,2
.37	Silikon Gap-Filler Pad / sehr weich / LV	TGF-USS-SI		3,3
38	Silikon Gap-Filler Pad/sehr weich	TGF-WSS-SI		5,5
39	Silikon Gap-Filler Pad/sehr weich/glasfaserverstärkt	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	1,3
40	Silikon Gap-Filler Pad / sehr weich / glasfaserverstärkt	•		1,4
41	Silikon Gap-Filler / plastisch	TGF-YP-SI		7,0
42	Silikon Gap-Filler / plastisch	TGF-ZP-SI		11
.43	Silikon Gap-Filler Pad / hoch thermisch leitfähig / LV	TEL-R-SI		15
.44	Silikon Gap-Filler Pad / hoch thermisch leitfähig / LV	TEL-Z-SI		50
45	Silikon Gap-Filler Pad / hoch thermisch leitfähig / LV	TEL-YSS-SI		16
46	Silikon Gap-Filler Pad / hoch thermisch leitfähig / LV	TEL-ZS-SI		20
47	Silikon 2K Gap-Filler / dispensierbar / LV	TDG-L-SI-2C-Y		2,0
48	Silikon 2K Gap-Filler / dispensierbar / LV	TDG-T-SI-2C		3,0
49	Silikon 2K Gap-Filler / dispensierbar / LV	TDG-U-SI-2C	·····	3,6
50	Silikon 2K Gap-Filler / dispension bar / LV	TDG-W-SI-2C	·····	4,5
51	Silikon Gap-Filler/Putty/dispensierbar	TGL-W-SI	·····	5,5
 52	Silikonfrei	TOE D NO	······	
52	Silikonfreies Gap-Filler Pad / weich	TGF-R-NS	·····	3,0
53	Silikonfreies Gap-Filler Pad / weich	TGF-V-NS		5,0 4.0
54 55	Silikonfreies Gap-Filler Pad / weich Silikonfreies Gap-Filler Pad / weich	TGF-W-NS TGF-Y-NS		6,0 8.0
56	Silikonfreies Gap-Filler Pad / sehr weich	TGF-GUS-NS		8,0 1,5
57	Silikonfreies Gap-Filler Pad / sehr weich	TGF-IXS-NS		2,0
58	Silikonfreies Gap-Filler Pad / sehr weich	TGF-NSS-NS		•••••
59	Silikonfreies Gap-Filler Pad / elasto-plastisch	TGF-XP-NS		2,5 7,0
	Silikonfreies Gap-Filler Pad / elasto-plastisch	TGF-ZP-NS		• · · • · · · · · · · · · · · · · · · ·
60	Sitinointeles dap-titlet t au/ elasio-plastiscif	101 -Z1 -N3	· · · · · · · · · · · · · · · · · · ·	10,0

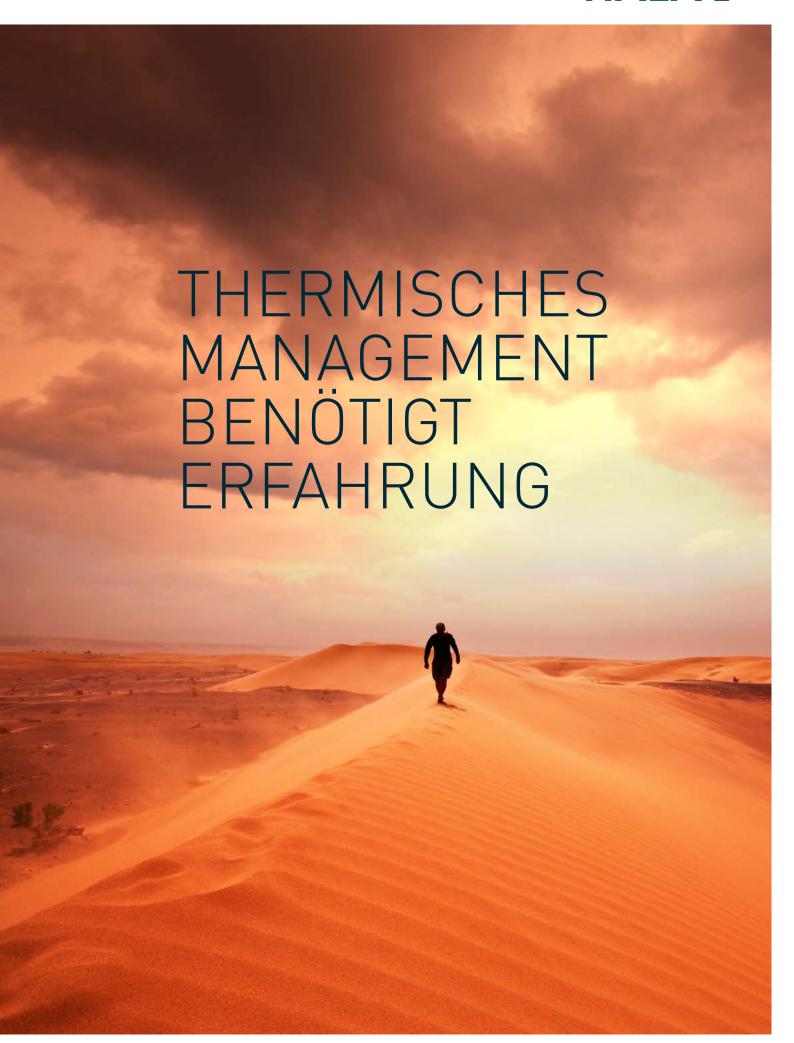
- elektrisch isolierend
- elektrisch nicht isolierend
- gering dielektrisch

· / LV = minimierte · volatile Siloxane

/1	3			W/mK
61	2 FOLIEN & FILME			
62	Silikonfolie / glasfaserverstärkt	TFO-D-SI		1,2
.63	Silikonfolie / glasfaserverstärkt	TF0-G-SI		1,6
64	Silikonfolie / glasfaserverstärkt	TF0-J-SI		2,0
65	Silikonfolie/glasfaserverstärkt	TF0-K-SI		2,5
66	Silikonfolie / glasfaserverstärkt	TF0-0-SI		3,0
.67	Silikonfolie / glasfaserverstärkt	TF0-T-SI		4,1
68	Silikonfolie / glasfaserverstärkt	TF0-X-SI		5,0
69	Silikonfolie / glasfaserverstärkt	TF0-ZS-SI		8,0
70	Silikonfolie / unverstärkt	TF0-L-SI		2,1
71	Isolationsfilm/silikonbeschichtet	TF0-M-SI-PI		
73	3 SILIKON KAPPEN			
74	Silikonkappe	TCP-C-SI		0,8
75	Silikonkappe	TCP-J-SI	··· ·	1,5
• • • • • • • • • • •	Silikonkappe	TCP-L-SI		2,0
76	Stirkotikappe	101 -L-31	···	2,0
77	4 PHASE CHANGE MATERIAL			
78	Polyimid Film / Phase Change beschichtet	TPC-N-PI		_
79	Polyimid Film / Phase Change beschichtet	TPC-P-KA		-
80	Phase Change Film	TPC-W-PC		3,5
81	Aluminiumfilm / Phase Change beschichtet	TPC-R-AL	_	_
82	Aluminiumfilm / Phase Change beschichtet	TPC-T-AL-CB	-	_
83	Phase Change Compound	TPC-W-PC-M/-E		3,5
84	Phase Change Compound	TPC-X-PC-NC-HT-M/-E	_	3,0
85	Phase Change Compound	TPC-Z-PC-HT-M/-E		3,0
87		••••••	•••••	••••
• • • • • • • • • •	5 GRAFIT FOLIEN		• • • • • • • • • • • • • • • • • • • •	
88	Grafit Folie / anisotrop wärmeleitend	TFO-S-CB		z:8/x-y:140
89	Grafit Folie / pyrolytisch	TFO-Y-PG		z: >15 x-y: >700
	One Ca Fell's described and	TEO 70 DO	••••	• · · • · · · · · · · · · · · · · · · ·
90	Grafit Folie / pyrolytisch	TF0-ZS-PG		z:30/x-y:500
91	6 PSA KLEBEBÄNDER			
92	PSA Klebeband / Akrylat mit Isolationsfilm	TAT-J-PE		0,7
93	PSA Klebeband / Silikon	TAT-M-SI	_	1,0
95	7 WÄRMELEITPASTEN			
	• • • • • • • • • • • • • • • • • • • •	TOD I NC	• • • • • • • • • • • • • • • • • • • •	
96	Silikonfreie Wärmeleitpaste / hoch thermisch leitfähig Silikonfreie Wärmeleitpaste / hoch thermisch leitfähig	TGR-J-NS		2,0
97	Stitkomrete Warmetertpaste/ noch thermisch teitramg	TGR-M-NS	···	2,4
99	8 KLEBER			
100	Silikonkleber/thermisch leitfähig / 1K	TAD-G-SI-1C		1,4
101	Silikonkleber/thermisch leitfähig / 1K	TAD-0-SI-1C	_	2,1
102	Silikonkleber/thermisch leitfähig / 1K RTV	TAD-P-SI-1C	_	2,3
	O VEDCUCCMACCEN			
103	9 VERGUSSMASSEN	TOD D C! 00	•••••	0.7
104	Silikon Vergussmasse / 2 Komponenten	TCR-D-SI-2C		0,7
105	Silikon Vergussmasse / 2 Komponenten	TCR-H-SI-2C		1,2
106	PU Vergussmasse / 2 Komponenten	TCR-J-PU-2C-LV-AR		1,5
100	PU Vergussmasse / 2 Komponenten	TCR-L-PU-2C-LV-AR		2,1
107	***************************************	TOD AL DU GO INC.		
108	PU Vergussmasse / 2 Komponenten	TCR-N-PU-2C-LV-AR		2,6
108 109	PU Vergussmasse / 2 Komponenten PU Vergussmasse / 2 Komponenten	TCR-N-PU-2C-MV-AL		2,6
108 109 110	PU Vergussmasse / 2 Komponenten PU Vergussmasse / 2 Komponenten PU Vergussmasse / 2 Komponenten	TCR-N-PU-2C-MV-AL TCR-R-PU-2C-LV-AR	•••••	2,6 3,0
108 109 110 111	PU Vergussmasse / 2 Komponenten	TCR-N-PU-2C-MV-AL TCR-R-PU-2C-LV-AR TCR-R-PU-2C-MV-AL	•••••	2,6 3,0 3,0
108 109 110 111 112	PU Vergussmasse / 2 Komponenten	TCR-N-PU-2C-MV-AL TCR-R-PU-2C-LV-AR TCR-R-PU-2C-MV-AL TCR-V-PU-2C-MV-AR	•••••	2,6 3,0 3,0 3,5
108 109 110 111	PU Vergussmasse / 2 Komponenten	TCR-N-PU-2C-MV-AL TCR-R-PU-2C-LV-AR TCR-R-PU-2C-MV-AL	•••••	2,6 3,0 3,0
108 109 110 111 112	PU Vergussmasse / 2 Komponenten	TCR-N-PU-2C-MV-AL TCR-R-PU-2C-LV-AR TCR-R-PU-2C-MV-AL TCR-V-PU-2C-MV-AR	•••••	2,6 3,0 3,0 3,5
108 109 110 111 112 113 115	PU Vergussmasse / 2 Komponenten	TCR-N-PU-2C-MV-AL TCR-R-PU-2C-LV-AR TCR-R-PU-2C-MV-AL TCR-V-PU-2C-MV-AR	•••••	2,6 3,0 3,0 3,5
108 109 110 111 112 113	PU Vergussmasse / 2 Komponenten	TCR-N-PU-2C-MV-AL TCR-R-PU-2C-LV-AR TCR-R-PU-2C-MV-AL TCR-V-PU-2C-MV-AR TCR-V-PU-2C-HV-AL	•••••	2,6 3,0 3,0 3,5

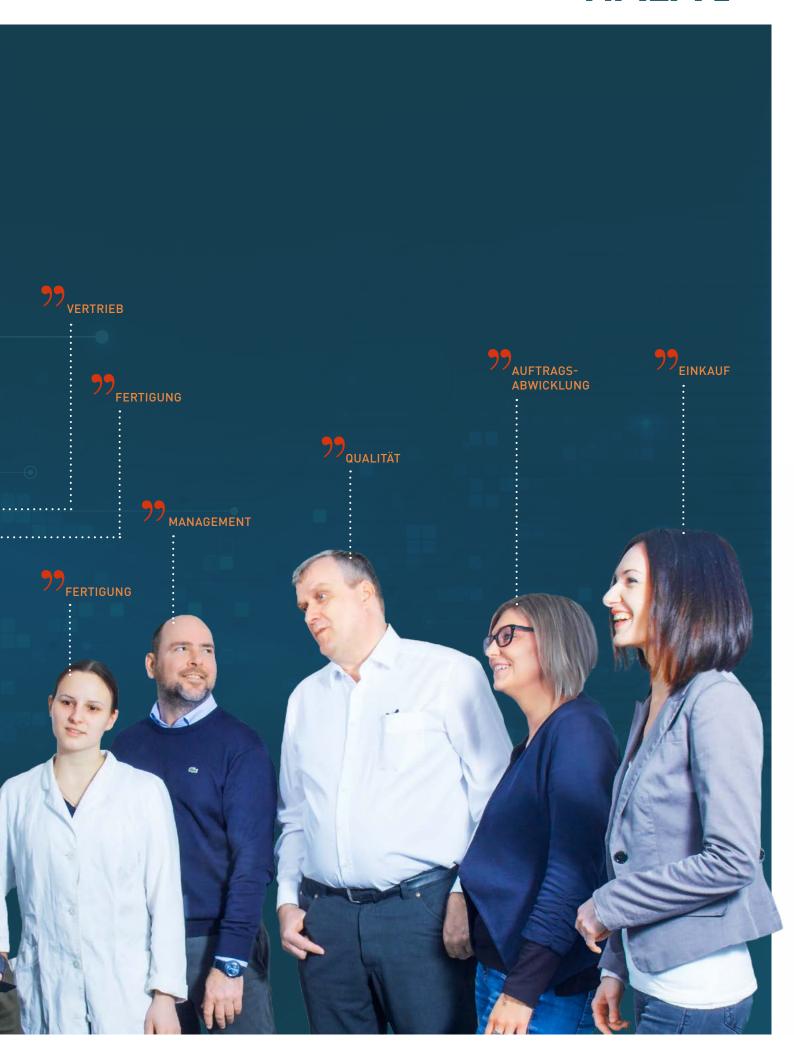
DAS MACHT HALA

MIT UMFASSENDEM
KNOW-HOW ENTWICKELT
UND LIEFERT HALA
MASSGESCHNEIDERTE
WÄRMEMANAGEMENT
LÖSUNGEN, WELTWEIT
UND HERSTELLERUNABHÄNGIG IN ENGSTER
PARTNERSCHAFT
MIT SEINEN KUNDEN.



DAS KANN HALA

HALA IST DIE KOMPETENZ-MARKE ZUR OPTIMIERUNG VON WÄRMEMANAGEMENT LÖSUNGEN UND THER-MISCHEN SCHNITTSTELLEN.


UNSERE MOTIVATION:
DIE PRODUKTE UNSERER
KUNDEN EFFIZIENTER UND
NACHHALTIGER ZU MACHEN.

- / PERSÖNLICHE BERATUNG ÜBER DIE GESAMTE SUPPLY-CHAIN
- /WIR SIND DER ENTWICKLUNGS-PARTNER UND LIEFERANT DER IHRE ANFORDERUNGEN BIS ZUM ENDE DENKT
- / WIR SIND FLEXIBEL UND SCHNELL IN DER VERARBEITUNG
- / ERFAHRUNG SEIT ÜBER 100 JAHREN



HALA 🗗

TOTAL-THERMAL-MANAGEMENT

FÜR WÄRMESPREIZUNG & WÄRMETRANSFER

PROJEKTMANAGEMENT

Als Projektverantwortliche entwickeln und optimieren wir Systemlösungen für das thermische Management. Und das tun wir von der Erstidee bis zum Serienprodukt.

Das Ganze im Blick: Unser Ansatz ist die Integration aller Komponenten unter Berücksichtigung mechanischer, thermischer, elektronischer und fertigungstechnischer Wechselwirkungen.

Dabei behalten wir immer Ihre technischen Anforderungen, die Qualität und das wirtschaftliche Optimum im Auge.

Als Entwicklungspartner und Lieferant, in Ihrer Sprache und in Ihrem Land.

TTM steht für Lösungskompetenz, Projektmanagement, Beschaffung und Lieferung.

TTM arbeitet grenzüberschreitend und global von der Erstidee zur Serienreife.

THERMISCHE SYSTEME

Wir realisieren integrierte High End Wärmemanagementlösungen der nächsten Generation für unterschiedliche Märkte, u.a. für die Leistungselektronik, Automotive, Energie-, Medizintechnik, Test- und Prüfmitteltechnik, Transport, Verteidigung, Luft- und Raumfahrt, Computer-, Kommunikationstechnologie.

Dabei integrieren wir Engineering, CAD Konstruktion, CFD Simulation, Prototypenbau, Serienfertigung, Test und Analyse.

HEATPIPE MODULE

Wärmetransfer



FLUIDKÜHLUNG

DAMIT WIR ZUSAMMEN MIT IHNEN DIE BESTE LÖSUNG FÜR IHRE ANFORDERUNGEN ENTWICKELN

DR. WILHELM POHL
MANAGING DIRECTOR
+49 89 665 477-84
wilhelm.pohl@hala-tec.de

HEAT PIPE MODULE

HEAT PIPES & FLACHHEATPIPES (VAPOR CHAMBERS)

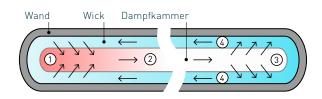
HALA liefert 2 Phasen Module in zwei Ausführungen: rohrförmige Heat Pipes und Flachheatpipes (Vapor Chambers).

HEAT PIPES

- □ Außendurchmesser: Von 2,0 mm bis zu über 50 mm
- Innenstruktur: Sinter, Netz, Nuten oder als Hybrid (Sinter-Nut)
- Querschnitte: Rund, rechteckig, abgeflacht
- Abflachung: Bis zu 0,4 mm
- □ Länge: Bis zu 70 mm
- ☐ Geometrie: Gerade oder mehrfach gebogen
- Verbindungstechnik von Heat Pipe und Assembly: Gelötet, Press Fit, Epoxy
- ☐ Heat Pipe Oberfläche: Vernickelt oder zinnplatiniert

Die Ausführung aller Kupfer-Wasser Heat Pipes ist robust und temperaturzyklenfest ohne alterungsbedingtes Derating. Kupfer-Wasser Heat Pipes benutzen Wasser als fluides Arbeitsmedium, der Betriebsbereich liegt zwischen 20 bis zu 150°C (und darüber).

Flachheatpipes auch Vapor Chambers (VC) genannt wirken als Wärmespreizer.


- 2 Phasensysteme aus Kupfer-Wasser können mit anderen Komponenten zu einem Modul für den Wärmetransfer kombiniert werden:
- Strangpress Kühlkörper
- Druckguss Kühlkörper
- Fin Stack Kühlkörper
- ☐ Skive Kühlkörper

Und thermisch angebunden durch:

■ Wärmeleitmaterialien (TIM)

HEAT PIPE FUNKTIONSWEISE

Hochtemperatur Umgebungstemperatur Niedrigtemperatur

Heat Pipe Funktionsweise

- ① Verdampfung des Arbeitsmediums unter Aufnahme von Wärmeenergie.
- 2 Dampftransport durch das Rohr an das kühlere Ende.
- ③ Kondensation des Dampfes, Aufnahme durch den Wick und Abgabe von Wärmenergie.
- 4 Rückfluss des Arbeitsmediums zum warmen Ende

DIMENSION UND LEISTUNGSBEREICH (mm)

.4)
.4)
,0)
3,6)
3,5)
,0)
,5)
,0)
,0)
,3)
,0)
,5)
2,0)

Qmax (W) Abgeflachte Dicke	Heat Pipe Durch- messer ø3mm	Heat Pipe Durch- messer ø4mm	Heat Pipe Durch- messer ø 5 mm	Heat Pipe Durch- messer ø 6 mm	Heat Pipe Durch- messer ø8mm
T = 2,0 mm	10 W	15 W	21 W	N/A	N/A
T = 2,5 mm	14 W	17 W	32 W	46 W	65 W
T = 3,0 mm	15 W	19 W	42 W	56 W	75 W
Gerundet	16 W	20 W	46 W	60 W	85 W

Durchmesser: 3 / 4 / 5 / 6 / 6,35 (½") / 8 / 9,52 (¾") / 10 / 12 / 12,7 (½")

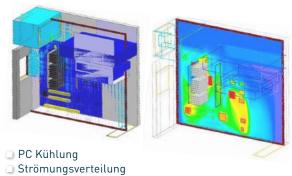
Wanddicke des Rohres 0.9 mm / 0.5 mm / 0.3 mm / 0.2 mm

 $\begin{array}{ll} \text{Durchmesser Toleranz} & \pm\,0.05\,\,\text{mm} \\ \text{Längen Toleranz} & \pm\,0.5\,\,\text{bis}\,\pm1.0\,\,\text{mm} \\ \text{Dicken Toleranz} & \pm\,0.05\,\,\text{mm} \end{array}$

Breiten Toleranz $\pm 0,10 \text{ bis } \pm 0,15 \text{ mm}$

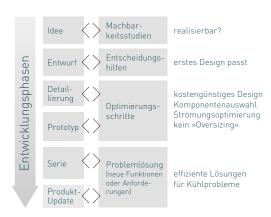
CFD SIMULATION

DR. BREIER CONSULTING, PARTNER VON HALA

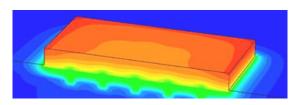

Die Kühlung sollte schon sehr früh in die Entwicklung einbezogen und nicht erst am Ende "auch noch" implementiert werden. Denn in der Regel sind thermische Redesigns sehr teuer und zeitraubend, vor allem dann, wenn sich dabei Auswirkungen auf die Abmessungen oder das Design ergeben.

Die "CFD Simulation"zielt auf die virtuelle Beschreibung strömungsmechanischer thermodynamischer Vorgänge ab, womit sich bereits die zu erwartenden Fehler-Häufigkeiten bzw. die Veränderung von Funktionseigenschaften über der Zeit untersuchen lassen (z.B. bei LED-Applikationen).

Es werden sowohl alle Verteilungen im Fluid (Druck, Druckverluste, Strömungsvektoren, Durchsatz, Fluid-Temperaturen) als auch in den Festkörpern (Temperaturen, Wärmeleitung, Wärmequellen) mit den Wärmeströmen von den Oberflächen zum Fluid (lokale Wärmeübergangskoeffizienten), zwischen Festkörpern (Kontaktwiderstände, Wärmestrahlung) sowie die Wärmestrahlung zwischen Umgebung und System (umschließende Wände, Sonneneinstrahlung) berücksichtigt.


Mit der durch unseren Partner Dr. Breier Consulting durchgeführten CFD Simulation unterstützen wir die Entwicklungsphasen mit der systemweiten Analyse aller Wärmetransporteffekte und ermöglichen damit die thermische Optimierung. Und das bis hinunter zum Bauteilelevel – bevor irgendwelche Prototypen verfügbar sind. Weitere Effekte: Minimierung der Time-To-Market, schnelle Upgrades und Ausfallanalysen.

SIMULATION AM BEISPIEL PERSONAL COMPUTER



- □ Temperaturverteilung Luft / Festkörper
- Optimierung des CPU Kühlkörpers
- Strategien zur Optimierung: z.B. Haube und Luftleitbleche am Eintritt als Luftführungen


ENTWICKLUNGSPHASEN SIMULATION

TIM KOMPAKTMODELL Beispiel Gap Filler Elastomer auf THERMAL VIAS Struktur

В

WÄRMELEITMATERIALIEN

/GAP-FILLER / FOLIEN & FILME /
SILIKON KAPPEN / PHASE CHANGE
MATERIAL / GRAFIT FOLIEN /
PSA KLEBEBÄNDER / WÄRMELEITPASTEN / KLEBER / VERGUSSMASSEN /
HALBLEITERKLAMMERN

SILIKON GAP-FILLER PAD TGF-M-SI

weich, elastisch

TGF-M-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine sehr hohe thermische Leitfähigkeit. Durch seine hohe Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

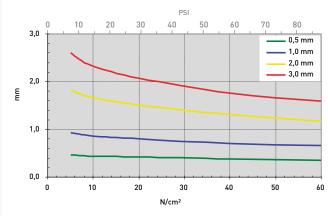
EIGENSCHAFTEN

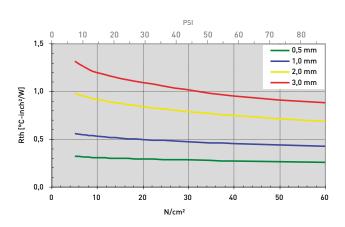
- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 2,5 W/mK
- Wirkung bei niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- □ Ein- oder beidseitig selbsthaftend

LIEFERFORMEN

- Matte 460 x 480 mm (0,5 /1,0 mm Dicke)
- ☐ Matte 460 x 460 mm (2,0 mm Dicke)
- Matte 450 x 460 mm (≥ 2,5 mm Dicke)
- ☐ Beidseitig haftend (TGF-MXXXX-SI)
- ☐ Einseitig haftend (TGF-MXXXX-SI-A1)
- Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- Kondensatoren
- Bauelementen an Heat-Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-M0500-SI	TGF-M1000-SI	TGF-M2000-SI	TGF-M3000-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Hellblau	Hellblau	Hellblau	Hellblau
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30
Härte	Shore 00	50	50	50	50
Entflammbarkeit	UL 94	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,27 (0,38)	0,45 (0,71)	0,75(1,31)	0,96 (1,76)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,29 (0,42)	0,50 (0,80)	0,84 (1,50)	1,09 (2,07)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,32 (0,45)	0,55 (0,90)	0,95 (1,75)	1,26 (2,46)
Thermische Leitfähigkeit¹	W/mK	2,5	2,5	2,5	2,5
Betriebstemperaturbereich	°C	- 60 bis + 180			
ELEKTRISCH					
Durchschlagsfestigkeit	kV/mm	10	10	10	10
Durchgangswiderstand	0hm - cm	1,0 x 10 ¹¹			
Dielektrizitätskonstante	@1kHz	5,2	5,2	5,2	5,2

Prüfmethode in Anlehnung an: 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm

SILIKON GAP-FILLER PAD TGF-R-SI

weich, elastisch

TGF-R-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine sehr hohe thermische Leitfähigkeit. Durch seine hohe Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

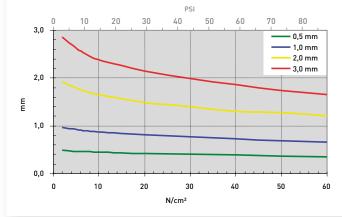
EIGENSCHAFTEN

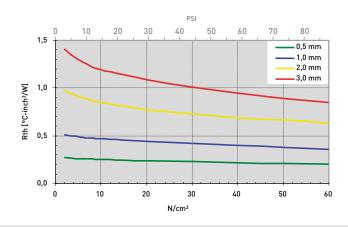
- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 3,0 W/mK
- Wirkung bei niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- Ein- oder beidseitig selbsthaftend

LIEFERFORMEN

- ☐ Matte 480 x 460 mm (0,5 / 1,0 mm Dicke)
- Matte 460 x 460 mm (2,0 mm Dicke)
- ☐ Matte 460 x 450 mm (3,0/4,0/5,0 mm Dicke)
- Beidseitig haftend (TGF-RXXXX-SI)
- ☐ Einseitig haftend (TGF-RXXXX-SI-A1)
- ☐ Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- ☐ Kondensatoren
- Bauelementen an Heat-Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-R0500-SI	TGF-R1000-SI	TGF-R2000-SI	TGF-R3000-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Hellblau	Hellblau	Hellblau	Hellblau
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30
Härte	Shore 00	55	55	55	55
Entflammbarkeit	UL 94	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,22 (0,39)	0,40 (0,73)	0,68 (1,31)	0,95 (1,86)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,24 (0,42)	0,44 (0,81)	0,77 (1,49)	1,09 (2,15)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,26 (0,46)	0,48 (0,90)	0,88 (1,72)	1,25 (2,50)
Thermische Leitfähigkeit¹	W/mK	3,0	3,0	3,0	3,0
Betriebstemperaturbereich	°C	- 60 bis + 180			
ELEKTRISCH					
Durchschlagsfestigkeit	kV/mm	10	10	10	10
Durchgangswiderstand	Ohm - cm	1,0 x 10 ¹¹			
Dielektrizitätskonstante	@ 1 kHz	5,2	5,2	5,2	5,2

Prüfmethode in Anlehnung an: 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 4,0 mm / 5,0 mm

SILIKON GAP-FILLER PAD TGF-U-SI

weich, elastisch

TGF-U-SI ist ein elektrisch isolierender, thermisch sehr hoch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine außergewöhnlich hohe thermische Leitfähigkeit. Durch seine Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

EIGENSCHAFTEN

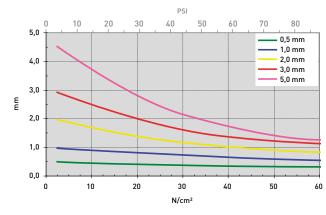
- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 4,5 W/mK
- Wirkung bei niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung

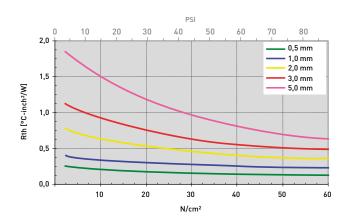
LIEFERFORMEN

- Matte 300 x 400 mm
- Beidseitig haftend (TGF-UXXXX-SI)
- Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

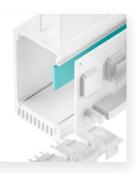
Thermische Anbindung von z.B.


- SMD Bauteilen
- ☐ Through-hole Vias
- Kondensatoren
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik /
- Industriecomputer


EIGENSCHAFT	EINHEIT	TGF-U0500-SI	TGF-U1000-SI	TGF-U2000-SI	TGF-U3000-SI	TGF-U5000-SI
MATERIAL		Silikon mit Keramikfüllung				
Farbe		Grau	Grau	Grau	Grau	Grau
Dicke	mm	0,5 ±0,10	1,0 ±0,15	2,0 ±0,20	3,0 ±0,25	5,0 ±0,30
Härte	Shore 00	60	60	60	3,0	60
Entflammbarkeit	UL 94	V0	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja	Ja
THERMISCH						
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,15 (0,35)	0,27 (0,65)	0,42 (1,03)	0,57 (1,40)	0,84 (1,75)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,17 (0,40)	0,32 (0,81)	0,55 (1,40)	0,78 (1,98)	1,20 (2,75)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,22 (0,45)	0,36 (0,91)	0,68 (1,77)	0,99 (2,63)	1,62 (3,95)
Thermische Leitfähigkeit ¹	W/mK	4,5	4,5	4,5	4,5	4,5
Betriebstemperaturbereich	°C	- 60 bis + 180				
ELEKTRISCH						
Durchschlagsfestigkeit	kV / mm	15	15	15	15	15

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 4,0 mm / 5,0 mm



SILIKON GAP-FILLER PAD TGF-VS-SI

weich, elastisch / minimierte volatile Siloxane (LV)

TGF-VS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus LV Silikon, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine extrem hohe thermische Leitfähigkeit. Durch seine hohe Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

EIGENSCHAFTEN

- Weich und formanpassungsfähig
- Minimierter volatiler Siloxananteil (LV)
- Wärmeleitfähigkeit: 5,0 W/mK
- Wirkung bei niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend

EIGENSCHAFT

- Leichte Vormontage durch Selbsthaftung
- Beidseitig selbsthaftend

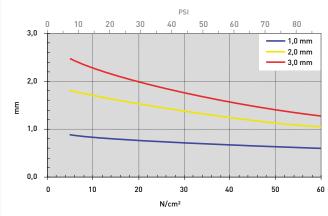
LIEFERFORMEN

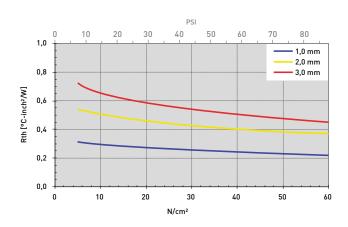
- Matte 400 x 200 mmBeidseitig haftend
- (TGF-VSXXXX-SI)

 ☐ Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- ☐ Flip Chips, DSPs, BGAs, PPGAs z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Embedded-Boards


EINHEIT TGF-VS1000-SI TGF-VS2000-SI TGF-VS3000-SI

	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
	Türkis	Türkis	Türkis
g/cm³	3,3	3,3	3,3
mm	1,0 +0,20	2,0 ±0,20	3,0±0,30
Shore 00	55	55	55
UL 94	V0	V0	V0
2015 / 863 / EU	Ja	Ja	Ja
°C-inch²/W (mm)	0,24 (0,67)	0,40 (1,25)	0,50 (1,55)
°C-inch²/W (mm)	0,28 (0,76)	0,46 (1,55)	0,59 (2,00)
°C-inch²/W (mm)	0,30 (0,87)	0,52 (1,78)	0,69 (2,42)
W/mK	5,0	5,0	5,0
°C	- 40 bis + 130	- 40 bis + 130	- 40 bis + 130
kV / mm	≥8	≽ 8	≥8
0hm - cm	≥1,0 x 10 ¹⁰	≥1,0 x 10 ¹⁰	≥1,0 x 10 ¹⁰
	mm Shore 00 UL 94 2015 / 863 / EU °C-inch²/W (mm) °C-inch²/W (mm) °C-inch²/W (mm) W/mK °C	Keramikfüllung Türkis g/cm³ 3,3 mm 1,0 ±0,20	Keramikfüllung Keramikfüllung Türkis Türkis g/cm³ 3,3 3,3 mm 1,0 ±0,20 ±0,20 ±0,20 2,0 ±0,20 ±0,20 Shore 00 55 55 UL 94 V0 V0 2015 / 863 / EU Ja Ja °C-inch²/W (mm) 0,24 (0,67) 0,40 (1,25) °C-inch²/W (mm) 0,28 (0,76) 0,46 (1,55) °C-inch²/W (mm) 0,30 (0,87) 0,52 (1,78) W/mK 5,0 5,0 °C -40 bis + 130 -40 bis + 130 kV / mm ≥8 ≥8

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 2,0 mm / 3,0 mm

SILIKON GAP-FILLER PAD TGF-XS-SI

weich, elastisch / minimierte volatile Siloxane (LV)

TGF-XS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus LV Silikon, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine extrem hohe thermische Leitfähigkeit. Durch seine Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

EIGENSCHAFTEN

- Weich und formanpassungsfähig
- Minimierter volatiler Siloxananteil (LV)
- Wärmeleitfähigkeit: 6,0 W/mK
- Wirkung bei niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- Beidseitig selbsthaftend

LIEFERFORMEN

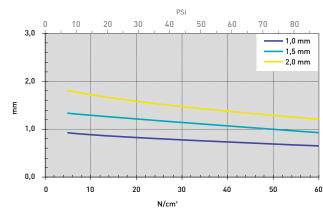
- Matte 400 x 200 mm (>= 1 mm)
- Matte 200 x 200 mm (< 1 mm)</p>
- Beidseitig haftend
- (TGF-XSXXXX-SI)

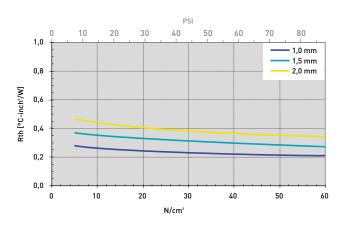
 ☐ Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- SMD Bauteilen
- ☐ Through-hole Vias
- ☐ RDRAM Speicherbausteine
- ☐ Flip Chips, DSPs, BGAs, PPGAs z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik /


Embedded-Boards


EIGENSCHAFT EINHEIT TGF-XS1000-SI TGF-XS1500-SI TGF-XS2000-SI

MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Grau	Grau	Grau
Dichte	g/cm³	3,3	3,3	3,3
Dicke	mm	1,0 ±0,10	1,5 ±0,15	2,0 ^{±0,20}
Härte	Shore 00	60	60	60
Entflammbarkeit	UL 94	V0	V0	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,22 (0,74)	0,30 (1,07)	0,36 (1,40)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,24 (0,83)	0,33 (1,22)	0,41 (1,60)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,27 (0,91)	0,36 (1,32)	0,45 (1,80)
Thermische Leitfähigkeit¹	W/mK	6,0	6,0	6,0
Betriebstemperaturbereich	°C	- 40 bis + 130	- 40 bis + 130	- 40 bis + 130
ELEKTRISCH				
Durchschlagsfestigkeit	kV / mm	≽ 8	>8	>8
Durchgangswiderstand	Ohm - cm	≥1,0 x 10 ¹⁰	≥1,0 x 10 ¹⁰	≥1,0 x 10 ¹⁰

Prüfmethode in Anlehnung an: 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,75 mm / 1,0 mm / 1,5 mm / 2,0 mm

SILIKON GAP-FILLER PAD TGF-Z-SI

weich, elastisch

TGF-Z-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine extrem hohe thermische Leitfähigkeit. Durch seine Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren

EIGENSCHAFTEN

- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 11 W/mK
- Wirkung bei niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- □ Ein- oder beidseitig selbsthaftend

LIEFERFORMEN

- Matte 200 x 300 mm■ Beidseitig haftend
- (TGF-ZXXXX-SI)
- Einseitig haftend durch Talkumschicht (TGF-ZXXXX-SI-A1)
- ☐ Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- ☐ SMD Bauteilen
- ☐ Through-hole Vias
- RDRAM Speicherbausteine
- Kondensatoren
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Embedded-Boards

EINHEIT	TGF-Z1000-SI	TGF-Z1500-SI	TGF-Z2000-SI
	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
	Hellgrau	Hellgrau	Hellgrau
g/cm3	3,3	3,3	3,3
mm	1,0 ±0,20	1,5 ±0,20	2,0 ±0,30
Shore 00	64	64	64
UL 94	V0	V0	V0
2015 / 863 / EU	Ja	Ja	Ja
°C-inch²/W	0,17 @ 0,90 mm	0,24 @ 1,40 mm	0,30 @ 1,80 mm
°C-inch²/W	0,15 @ 0,70 mm	0,23 @ 1,20 mm	0,27 @ 1,60 mm
W/mK	11,0	11,0	11,0
°C	- 50 bis + 180	- 50 bis + 180	- 50 bis + 180
kV/mm	>10	>10	>10
0hm - cm	7,0 x 10 ¹¹	7,0 x 10 ¹¹	7,0 x 10 ¹¹
1 MHz	ca. 7,5	ca. 7,5	ca. 7,5
	g/cm3 mm Shore 00 UL 94 2015 / 863 / EU °C-inch²/W °C-inch²/W W/mK °C kV / mm Ohm - cm	Silikon mit Keramikfüllung Hellgrau g/cm3 3,3 mm 1,0 ±0,20 Shore 00 64 UL 94 V0 2015 / 863 / EU Ja °C-inch²/W 0,17 @ 0,90 mm °C-inch²/W 0,15 @ 0,70 mm W/mK 11,0 °C -50 bis + 180 kV / mm >10 Ohm - cm 7,0 x 10 11	Silikon mit Keramikfüllung Hellgrau Hellgrau Hellgrau g/cm3 3,3 3,3 mm 1,0 ± 0,20 1,5 ± 0,20 Shore 00 64 64 UL 94 V0 V0 2015 / 863 / EU Ja Ja °C-inch²/W 0,17 @ 0,90 mm 0,24 @ 1,40 mm °C-inch²/W 0,15 @ 0,70 mm 0,23 @ 1,20 mm W/mK 11,0 11,0 °C -50 bis + 180 -50 bis + 180 kV / mm >10 >10 Ohm - cm 7,0 x 10 11 7,0 x 10 11

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 1,0 mm / 1,5 mm / 2,0 mm

SILIKON GAP-FILLER PAD TGF-BXS-SI

ultra weich, elastisch

TGF-BXS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine gute thermische Leitfähigkeit. Durch seine ultra Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei minimalem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Die auf einer Seite optional aufgebrachte PSA Klebeschicht sorgt für eine starke Klebeverbindung.

EIGENSCHAFTEN

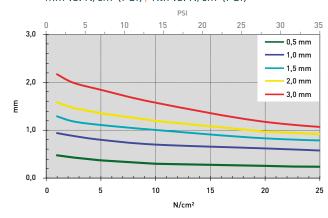
- Ultra weich und formanpassungsfähig
- Wärmeleitfähigkeit: 1,2 W/mK
- Wirkung bei minimalem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- Beidseitig haftend oder einseitig klebend

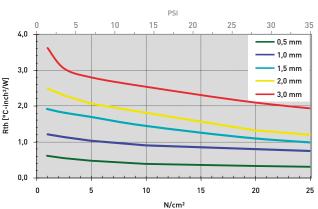
LIEFERFORMEN

- ☐ Matte 200 x 400 mm
- Beiseitig selbsthaftend (TGF-BXSXXXX-SI)
- □ Einseitige PSA Klebeschicht (TGF-BXSXXXX-SI-A1)
- ☐ Als lose Formstanzteile
- ☐ Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- Kondensatoren
- Bauelementen an Heat-Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Industriecomputer


EIGENSCHAFT	EINHEII	IGF-BXS0500-SI	IGF-BXS1000-SI	IGF-BXS1500-SI	TGF-BXS2000-SI	TGF-BXS3000-SI

MATERIAL		Silikon mit Keramikfüllung				
Farbe		Rosa	Rosa	Rosa	Rosa	Rosa
Dicke	mm	0,5 ±0,10	1,0 ±0,10	1,5 ±0,15	2,0 ±0,20	3,0 ±0,30
Dichte	g/cm³	2,3	2,3	2,3	2,3	2,3
Härte	Shore 00	30	30	30	30	30
Entflammbarkeit	UL 94	V0	V0	VO	VO	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja	Ja
THERMISCH						
Widerstand¹ @ 250 kPa @ Dicke	°C-inch²/W (mm)	0,31 (0,24)	0,75 (0,58)	1,00 (0,80)	1,20 (0,92)	1,95 (1,09)
Widerstand¹ @ 100 kPa @ Dicke	°C-inch²/W (mm)	0,39 (0,30)	0,90 (0,70)	1,45 (1,01)	1,81 (1,19)	2,54 (1,57)
Widerstand¹ @ 50 kPa @ Dicke	°C-inch²/W (mm)	0,48 (0,37)	1,03 (0,80)	1,70 (1,11)	2,07 (1,35)	2,80 (1,84)
Thermische Leitfähigkeit¹	W/mK	1,2	1,2	1,2	1,2	1,2
Betriebstemperaturbereich	°C	- 40 bis + 150	- 40 bis + 150	- 40 bis + 150	-40 bis + 150	-40 bis + 150
ELEKTRISCH						
Durchschlagsfestigkeit	kV/mm	> 6,5	> 6,5	> 6,5	> 6,5	> 6,5
Durchgangswiderstand	0hm - cm	3,5 x 10 ¹²				
Dielektrizitätskonstante	@ 1 MHz	3,87	3,87	3,87	3,87	3,87

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 3,5 mm / 4,0 mm / 4,5 mm / 5,0 / .. 12 mm mm vs. N/cm² (PSI) / Rth vs. N/cm² (PSI)

SILIKON GAP-FILLER PAD TGF-HUS-SI

extrem weich, elastisch

TGF-HUS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine gute thermische Leitfähigkeit. Durch seine extreme Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei sehr geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

EIGENSCHAFTEN

- Extrem weich und formanpassungsfähig
- Wärmeleitfähigkeit: 1,8 W/mK
- Wirkung bei sehr niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend

FICENCOLIAFT

Leichte Vormontage durch Selbsthaftung

CINILICIT

Beidseitig selbsthaftend

LIEFERFORMEN

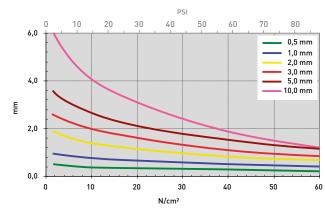
- ☐ Matte 300 x 400 mm
- Beidseitig haftend (TGF-HUSXXXXX-SI)
- ☐ Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

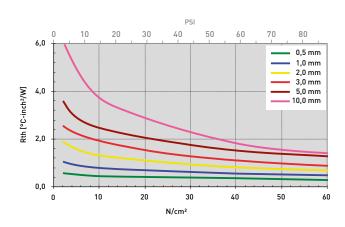
ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- SMD Bauteilen
- ☐ Through-hole Vias
- Kondensatoren
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik /

Industriecomputer


TOT HUGOEOG CL. TOT HUGOOOG CL. TOT HUGOOOG CL. TOT HUGOOOG CL. TOT HUGEOOG CL.


EIGENSCHAFT	CHAUCH	107-003000-31	101-0031000-31	105-0052000-51	101-003000-31	101-4022000-21

MATERIAL		Silikon mit Keramikfüllung				
Farbe		Dunkelgrau	Dunkelgrau	Dunkelgrau	Dunkelgrau	Dunkelgrau
Dicke	mm	0,5 ±0,10	1,0 ±0,15	2,0 ±0,20	3,0 ±0,25	5,0 ±0,30
Härte	Shore 00	30	30	30	30	30
Entflammbarkeit	UL 94	V0	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja	Ja
THERMISCH						
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,34 (0,31)	0,56 (0,54)	0,82 (0,85)	1,10 (1,09)	1,52 (1,54)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,40 (0,36)	0,69 (0,68)	1,12 (1,16)	1,53 (1,63)	2,06 (2,13)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,50 (0,46)	0,85 (0,85)	1,48 (1,57)	2,10 (2,18)	2,71 (2,92)
Thermische Leitfähigkeit¹	W/mK	1,8	1,8	1,8	1,8	1,8
Betriebstemperaturbereich	°C	- 40 bis + 150	- 40 bis 150			
ELEKTRISCH						
Durchschlagsfestigkeit	kV/mm	> 10	> 10	> 10	> 10	> 10
Durchgangswiderstand	Ohm - cm	8,056 x 10 ¹²				
Dielektrizitätskonstante	@ 1 kHz	5,6	5,6	5,6	5,6	5,6

Prüfmethode in Anlehnung an: ¹ ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 4,0 mm / 5,0 mm / 10,0 mm

SILIKON GAP-FILLER PAD TGF-JUS-SI

extrem weich, elastisch

TGF-JUS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine gute thermische Leitfähigkeit. Durch seine extreme Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei sehr geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

EIGENSCHAFTEN

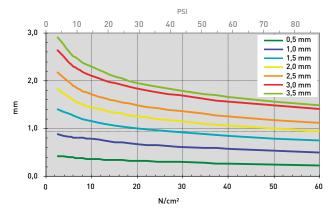
- Extrem weich und formanpassungsfähig
- Wärmeleitfähigkeit: 2,0 W/mK
- Wirkung bei sehr niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- ☐ Ein- oder beidseitig selbsthaftend

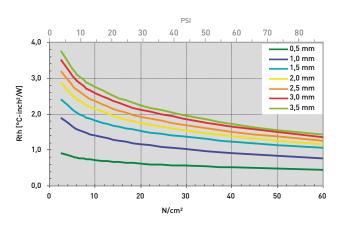
LIEFERFORMEN

- ☐ Matte 480 x 460 mm (1,0 mm Dicke)
- ☐ Matte 460 x 460 mm (2,0 mm Dicke)
- Matte 450 x 460 mm (≥ 2,5 mm Dicke)
- ☐ Beidseitig haftend (TGF-JUSXXXX-SI)
- ☐ Einseitig haftend (TGF-JUSXXXX-SI-A1)
- Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- Kondensatoren
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Industriecomputer


EIGENSCHAFT	EINHEIT	TGF-JUS0500-SI	TGF-JUS1000-SI	TGF-JUS2000-SI	TGF-JUS3000-SI

MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Grau	Grau	Grau	Grau
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30
Härte	Shore 00	20	20	20	20
Entflammbarkeit	UL 94	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,60 (0,35)	1,00 (0,65)	1,40 (1,10)	1,70 (1,60)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,70 (0,40)	1,20 (0,75)	1,80 (1,30)	2,10 (1,85)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,80 (0,45)	1,50 (0,85)	2,30 (1,58)	2,80 (2,25)
Thermische Leitfähigkeit ¹	W/mK	2,0	2,0	2,0	2,0
Betriebstemperaturbereich	°C	- 60 bis + 180			
ELEKTRISCH					
Durchschlagsfestigkeit	kV / mm	10	10	10	10
Durchgangswiderstand	0hm - cm	1,0 x 10 ¹¹			
Dielektrizitätskonstante	@ 1 kHz	5	5	5	5

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 3,5 mm / 4,0 mm / 4,5 mm / 5,0 mm

SILIKON GAP-FILLER PAD TGF-JXS-SI

ultra weich, elastisch / minimierte volatile Siloxane (LV)

TGF-JXS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus LV Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine hohe thermische Leitfähigkeit. Durch seine ultra Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei minimalem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Durch einen einseitig aufgebrachten wärmeleitenden Film ist das Material einseitig nicht haftend.

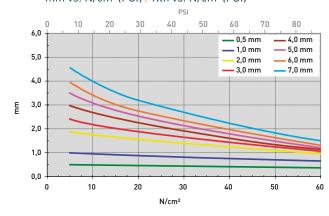
EIGENSCHAFTEN

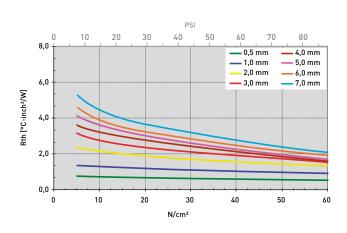
- Ultra weich und formanpassungsfähig
- Minimierter volatiler Siloxananteil (LV)
- Keine Lackabweisung
- Wärmeleitfähigkeit: 2,0 W/mK
- Wirkung bei minimalem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- Einseitig selbsthaftend

LIEFERFORMEN

- Matte 210 x 420 mm (0,5 3,0 mm Dicke)
- ☐ Matte 210 x 350 mm (3,5 6,0 mm Dicke)
- Einseitig haftend durch Filmlaminat (TGF-JXSXXXX-SI-A1)
- ☐ Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- ☐ Flip Chips, DSPs, BGAs, PPGAs z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Embedded-Boards

EIGENSCHAFT	EINHEIT	TGF-JXS0500- SI-A1	TGF-JXS1000- SI-A1	TGF-JXS2000- SI-A1	TGF-JXS3000- SI-A1	TGF-JXS5000- SI-A1
MATERIAL		Silikon mit Keramikfüllung				
Farbe		Hellblau / Grau				
Dicke	mm	0,5 +0,20	1,0 +0,20	2,0 ±0,20	3,0 ±0,30	5,0 ±0,50
Härte	Shore 00	20	20	20	20	20
Keine Lackabweisung (LABS)¹		Ja	Ja	Ja	Ja	Ja
Entflammbarkeit	UL 94	V0	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja	Ja
THERMISCH						
Widerstand ² @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,59 (0,41)	1,03 (0,75)	1,57 (1,25)	1,90 (1,46)	2,26 (1,81)
Widerstand ² @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,64 (0,45)	1,16 (0,86)	1,85 (1,55)	2,33 (1,87)	2,98 (2,52)
Widerstand ² @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,74 (0,49)	1,32 (0,96)	2,27 (1,82)	2,96 (2,31)	3,89 (3,32)
Thermische Leitfähigkeit	W/mK	2,0	2,0	2,0	2,0	2,0
Betriebstemperaturbereich	°C	- 40 bis + 200				
ELEKTRISCH						
Durchschlagsfestigkeit	kV / mm	>10	>10	>10	>10	>10
Durchgangswiderstand	Ohm - cm	1,0 x 10 ¹⁰				

Prüfmethode in Anlehnung an: 1 P-VW 3-10.7 57650 Temp. Test, 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 2,0 mm / 2,5 mm / 3,0 mm / 4,0 mm / 5,0 mm / 6,0 mm / 7,0 mm

SILIKON GAP-FILLER PAD TGF-MXS-SI

ultra weich, mit oder ohne Glasfaserverstärkung

TGF-MXS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine hohe thermische Leitfähigkeit. Durch seine ultra Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei minimalem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Die auf einer Seite optional aufgebrachte glasfaserverstärkte und thermisch leitfähige Silikonfolie sorgt für eine erhöhte mechanische Stabilität und Festigkeit.

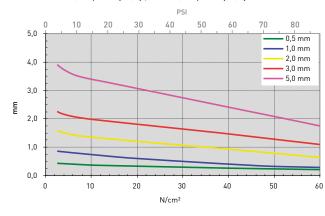
EIGENSCHAFTEN

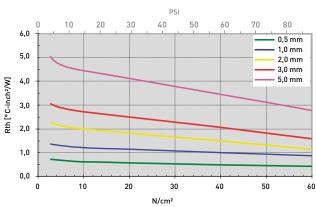
- Ultra weich und formanpassungsfähig
- Wärmeleitfähigkeit: 2,4 W/mK
- Wirkung bei minimalem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- □ Ein- oder beidseitig selbsthaftend

LIEFERFORMEN

- Matte 200 x 400 mm
- Beidseitig haftend (TGF-MXSXXXX-SI)
- Einseitig haftend durch Glasfaserlaminat (TGF-MXSXXXX-SI-GF)
- ☐ Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- Kondensatoren
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-MXS0500-SI	TGF-MXS1000-SI	TGF-MXS2000-SI	TGF-MXS3000-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Grau (/ Rot- Laminat)	Grau (/ Rot- Laminat)	Grau (/ Rot- Laminat)	Grau (/ Rot- Laminat)
Optionale Verstärkung (TGF-MXSXXXX-SI-GF)		Glasfaser- laminat	Glasfaser- laminat	Glasfaser- laminat	Glasfaser- laminat
Dicke	mm	0,5 ±0,10	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30
Härte	Shore 00	15	15	15	15
Entflammbarkeit	UL 94	V1	V1	V1	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,44 (0,25)	1,00 (0,45)	1,49 (0,86)	2,05 (1,50)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,53 (0,32)	1,15 (0,63)	1,79 (1,15)	2,50 (1,73)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,63 (0,40)	1,26 (0,75)	2,03 (1,40)	2,77 (2,05)
Thermische Leitfähigkeit	W/mK	2,4	2,4	2,4	2,4
Betriebstemperaturbereich	°C	- 40 bis + 200			
ELEKTRISCH					
Durchschlagsfestigkeit	kV / mm	4	4	4	4
Durchgangswiderstand	0hm - cm	1,7 x 10 ¹³			

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm /1,0 mm /2,0 mm /3,0 mm /4,0 mm /5,0 mm /... /10,0 mm. Andere Dicken auf Anfrage mm vs. N/cm² (PSI) / Rth vs. N/cm² (PSI)

SILIKON GAP-FILLER PAD TGF-LSS-SI

sehr weich, elastisch

TGF-LSS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine sehr hohe thermische Leitfähigkeit. Durch seine außerordentliche Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei sehr geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Durch ein Glasfaserinlay oder ein glasfaserverstärktes Filmlaminat oder durch ein PI-Filmlaminat kann das Material mechanisch verstärkt werden.

EIGENSCHAFTEN

- Außerordentlich weich und formanpassungsfähig
- Wärmeleitfähigkeit: 2,5 W/mK
- ☐ Wirkung bei sehr niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- ☐ Leichte Vormontage durch Selbsthaftung
- Beidseitig selbsthaftend

LIEFERFORMEN

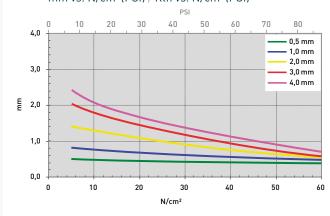
- Matte 200 x 400 mm
- ☐ Beidseitig selbsthaftend (TGF-LSSXXXX-SI)
- Mit Glasfaserinlay
- (TGF-LSSXXXX-SI-GF)
- Mit Filmlaminat glasfaserverstärkt
- (TGF-LSSXXXX-SI-LGF)
- ☐ Mit PI-Filmlaminat (TGF-LSSXXXX-SI-LPI)
- ☐ Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

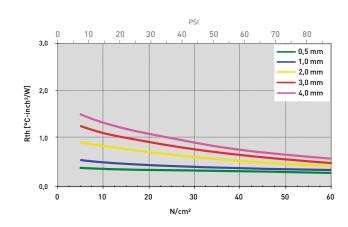
ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- SMD Bauteilen
- Through-hole Vias
- □ RDRAM Speicherbausteine
- ☐ Flip Chips, DSPs, BGAs, PPGAs
- z.B. in Automotiveanwendungen /

Notebooks / Medizintechnik / Embedded-Boards / Grafikkarten / Speicher-

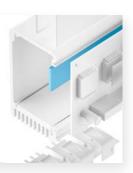

module / LED-Licht / LCD und Plasma TV


EIGENSCHAFT EINHEIT TGF-LSS0500-SI TGF-LSS1000-SI TGF-LSS2000-SI TGF-LSS3000-SI TGF-LSS4000-SI

MATERIAL		Silikon mit Keramikfüllung				
Farbe		Hellbeige	Hellbeige	Hellbeige	Hellbeige	Hellbeige
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30	4,0 ±0,40
Härte	Shore 00	34	34	34	34	34
Entflammbarkeit	UL 94	V0	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja	Ja
THERMISCH						
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,32 (0,39)	0,40 (0,54)	0,54 (0,71)	0,65 (0,90)	0,75 (1,10)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,35 (0,43)	0,46 (0,65)	0,75 (1,09)	0,96 (1,46)	1,11 (1,67)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,39 (0,47)	0,55 (0,77)	0,90 (1,35)	1,22 (1,93)	1,44 (2,30)
Thermische Leitfähigkeit¹	W/mK	2,5	2,5	2,5	2,5	2,5
Betriebstemperaturbereich	°C	- 50 bis + 170	- 50 bis +170			
ELEKTRISCH						
Durchschlagsfestigkeit	kV/mm	→7,0	→7,0	→7,0	>7,0	→7,0
Durchgangswiderstand	Ohm - cm	1,0 x 10 ¹³				
Dielektrizitätskonstante	@ 1 MHz	5,3	5,3	5,3	5,3	5,3

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0.5 mm / 1.0 mm / 2.0 mm / 3.0 mm / 4.0 mm / 5.0 mm / ... / 10.0 mm



SILIKON GAP-FILLER PAD TGF-MUS-SI

extrem weich, elastisch

TGF-MUS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine sehr hohe thermische Leitfähigkeit. Durch seine extreme Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei sehr geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr qut vorapplizieren.

EIGENSCHAFTEN

- Extrem weich und formanpassungsfähig
- Wärmeleitfähigkeit: 2,5 W/mK
- Wirkung bei sehr niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend

EIGENSCHAFT

ELEKTRISCH

Durchschlagsfestigkeit

Durchgangswiderstand

Dielektrizitätskonstante

Leichte Vormontage durch Selbsthaftung

EINHEIT

☐ Ein- oder beidseitig selbsthaftend

LIEFERFORMEN

- Matte 480 x 460 mm (1,0 mm Dicke)
- Matte 460 x 460 mm (2,0 mm Dicke)
- Matte 450 x 460 mm (3,0 mm Dicke)
- Beidseitig haftend (TGF-MUSXXXX-SI)
- ☐ Einseitig haftend (TGF-MUSXXXX-SI-A1)

TGF-MUS1000-SI TGF-MUS2000-SI TGF-MUS3000-SI

- ☐ Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- SMD Bauteilen
- Through-hole Vias
- Kondensatoren
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Industriecomputer

MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Hellblau	Hellblau	Hellblau
Dicke	mm	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30
Härte	Shore 00	20	20	20
Entflammbarkeit	UL 94	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,37 (0,52)	0,58 (0,85)	0,74 (1,06)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,42 (0,59)	0,70 (1,02)	0,89 (1,32)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,49 (0,70)	0,89 (1,29)	1,20 (1,70)
Thermische Leitfähigkeit ¹	W/mK	2,5	2,5	2,5
Betriebstemperaturbereich	°C	- 60 bis + 180	- 60 bis + 180	- 60 bis + 180

1,0 x 10¹

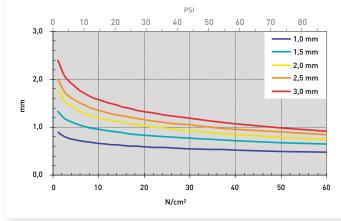
5,2

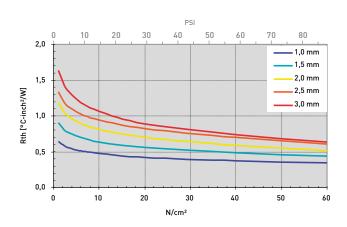
1,0 x 10¹¹

5,2

Prüfmethode in Anlehnung an: 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen

1,0 x 10¹¹


5,2


Standarddicken: 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 4,0 mm / 5,0 mm

kV/mm

@1kHz

0hm - cm

SILIKON GAP-FILLER PAD TGF-RSS-SI

sehr weich, elastisch

TGF-RSS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine sehr hohe thermische Leitfähigkeit. Durch seine außerordentliche Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei sehr geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Durch ein Glasfaserinlay oder ein glasfaserverstärktes Filmlaminat oder durch ein PI-Filmlaminat kann das Material mechanisch verstärkt werden.

EIGENSCHAFTEN

- Außerordentlich weich und formanpassungsfähig
- Wärmeleitfähigkeit: 3,0 W/mK
- Wirkung bei sehr niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- ☐ Leichte Vormontage durch Selbsthaftung
- Beidseitig selbsthaftend

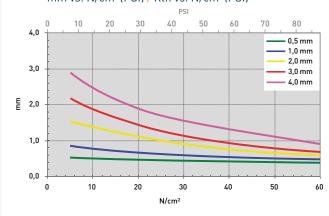
LIEFERFORMEN

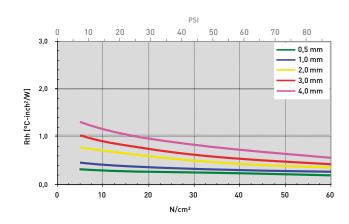
- Matte 200 x 400 mm
- Beidseitig selbsthaftend (TGF-RSSXXXX-SI)
- ☐ Mit Glasfasermesh Inlay
- (TGF-RSSXXXX-SI-GF)
- ☐ Mit Filmlaminat glasfaserverstärkt
- (TGF-RSSXXXX-SI-LGF)
- ☐ Mit PI-Filmlaminat (TGF-RSSXXXX-SI-LPI)
- Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- ☐ Flip Chips, DSPs, BGAs, PPGAs
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Embedded-Boards / Grafikkarten / Speicher-


module / LED-Licht / LCD und Plasma TV


EIGENSCHAFT EINHEIT TGF-RSS0500-SI TGF-RSS1000-SI TGF-RSS2000-SI TGF-RSS3000-SI TGF-RSS4000-SI

MATERIAL		Silikon mit Keramikfüllung				
Farbe		Hellblau	Hellblau	Hellblau	Hellblau	Hellblau
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30	4,0 ±0,40
Härte	Shore 00	43	43	43	43	43
Entflammbarkeit	UL 94	VO	V0	V0	VO	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja	Ja
THERMISCH						
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,25 (0,41)	0,31 (0,52)	0,44 (0,73)	0,54 (0,93)	0,74 (1,33)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,27 (0,44)	0,37 (0,67)	0,59 (1,10)	0,75 (1,44)	0,95 (1,89)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,30 (0,48)	0,45 (0,81)	0,75 (1,48)	0,99 (2,08)	1,25 (2,74)
Thermische Leitfähigkeit¹	W/mK	3,0	3,0	3,0	3,0	3,0
Betriebstemperaturbereich	°C	- 50 bis + 170				
ELEKTRISCH						
Durchschlagsfestigkeit	kV / mm	→7,0	>7,0	>7,0	>7,0	>7,0
Durchgangswiderstand	Ohm - cm	1,0 x 10 ¹³				
Dielectric Constant	@ 1 MHz	5,6	5,6	5,6	5,6	5,6

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0.5 mm / 1.0 mm / 2.0 mm / 3.0 mm / 4.0 mm / 5.0 mm / ... / 10.0 mm

SILIKON GAP-FILLER PAD TGF-TSS-SI

sehr weich, elastisch

TGF-TSS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine sehr hohe thermische Leitfähigkeit. Durch seine außerordentliche Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei sehr geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

EIGENSCHAFTEN

- Extrem weich und formanpassungsfähig
- Wärmeleitfähigkeit: 3,2 W/mK
- Wirkung bei sehr niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung

LIEFERFORMEN

- Matte 300 x 400 mm
- Beidseitig haftend (TGF-TSSXXXX-SI)
- ☐ Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

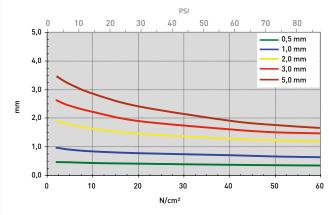
Thermische Anbindung von z.B.

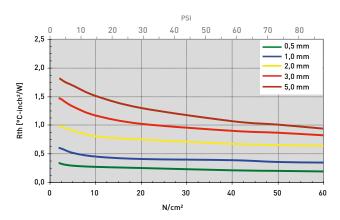
- SMD Bauteilen
- Through-hole Vias
- Kondensatoren
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik /

Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-TSS0500-SI	TGF-TSS1000-SI	TGF-TSS2000-SI	TGF-TSS3000-SI	TGF-TSS5000-S
MATERIAL		Silikon mit Keramikfüllung				
- arbe	•••••	rötliches Purpur				
Dicke	mm	0,5 ±0,10	1,0 ±0,15	2,0 ±0,20	3,0 ±0,25	5,0 ±0,30
Härte	Shore 00	37	37	37	37	37
Entflammbarkeit	UL 94	V0	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja	Ja
THERMISCH						
Niderstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,22 (0,37)	0,40 (0,70)	0,68 (1,27)	0,91 (1,60)	1,08 (1,90)
Niderstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,26 (0,41)	0,42 (0,77)	0,76 (1,45)	1,03 (1,89)	1,31 (2,40)
Niderstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,29 (0,44)	0,49 (0,86(0,86 (1,70)	1,25 (2,31)	1,61 (3,01)
Thermische Leitfähigkeit¹	W/mK	3,2	3,2	3,2	3,2	3,2
Betriebstemperaturbereich	°C	- 60 bis + 180				

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.


Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 4,0 mm / 5,0 mm


15

kV/mm

Durchschlagsfestigkeit

SILIKON GAP-FILLER PAD TGF-USS-SI

sehr weich, elastisch / minimierte volatile Siloxane (LV)

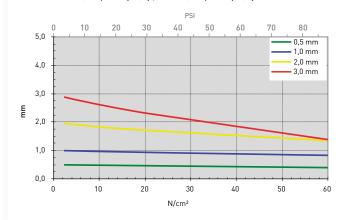
TGF-USS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus LV Silikon, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine sehr hohe thermische Leitfähigkeit. Durch seine ultra Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei minimalem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Durch einen einseitig aufgebrachten wärmeleitenden Film ist das Material einseitig nicht haftend.

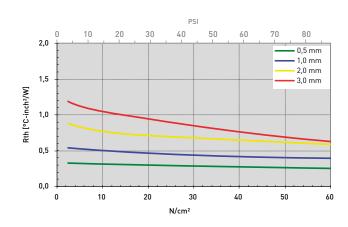
EIGENSCHAFTEN

- Ultra weich und formanpassungsfähig
- Minimierter volatiler Siloxananteil (LV)
- Keine Lackabweisung
- □ Wärmeleitfähigkeit: 3,3 W/mK
- Wirkung bei minimalem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- Einseitig selbsthaftend

LIEFERFORMEN

- ☐ Matte 200 x 200 mm (0,5 3,0 mm Dicke)
- ☐ Matte 200 x 400 mm (0,5 3,0 mm Dicke)
- □ Einseitig haftend durch Filmlaminat (TGF-USSXXXX-SI-A1)
- ☐ Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen


ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- SMD Bauteilen
- ☐ Through-hole Vias
- ☐ RDRAM Speicherbausteine
- ☐ Flip Chips, DSPs, BGAs, PPGAs z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Embedded-Boards

EIGENSCHAFT	EINHEIT	TGF-USS0500- SI-A1	TGF-USS1000- SI-A1	TGF-USS2000- SI-A1	TGF-USS3000- SI-A1
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Dunkelgrau / Grau	Dunkelgrau / Grau	Dunkelgrau / Grau	Dunkelgrau / Grau
Dicke	mm	0,5 +0,20	1,0 +0,20	2,0 ±0,20	3,0 ±0,30
Härte	Shore 00	45	45	45	45
Keine Lackabweisung (LABS)¹		Ja	Ja	Ja	Ja
Entflammbarkeit (Äquivalent)	UL 94	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand ² @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,26 (0,47)	0,40 (0,87)	0,63 (1,55)	0,75 (1,84)
Widerstand ² @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,29 (0,48)	0,45 (0,93)	0,70 (1,70)	0,94 (2,30)
Widerstand ² @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,31 (0,49)	0,51 (0,99)	0,80 (1,85)	1,07 (2,68)
Thermische Leitfähigkeit ¹	W/mK	3,3	3,3	3,3	3,3
Betriebstemperaturbereich	°C	- 40 bis + 150			
ELEKTRISCH					
Durchschlagsfestigkeit	kV / mm	>10	>10	>10	>10
Durchgangswiderstand	Ohm - cm	1,0 x 10 ¹⁰			

Testmethode: 'P-VW 3-10.7 57650 Temp. Test, 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Standarddicken: 0,5 mm / 1,0 mm / 2,0 mm / 3,0 mm

SILIKON GAP-FILLER PAD TGF-WSS-SI

sehr weich, elastisch

TGF-WSS-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine extrem hohe thermische Leitfähigkeit. Durch seine hohe Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei sehr geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

EIGENSCHAFTEN

- Sehr weich und formanpassungsfähig
- Wärmeleitfähigkeit: 5,5 W/mK
- Wirkung bei sehr niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- □ Ein- oder beidseitig selbsthaftend

LIEFERFORMEN

- ☐ Matte 460 x 100 mm
- Beidseitig haftend (TGF-WSSXXXX-SI)
- ☐ Einseitig haftend (TGF-WSSXXXX-SI-A1)
- ☐ Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

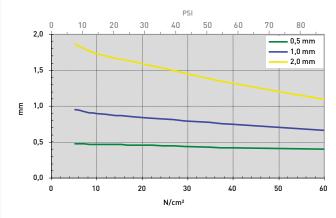
- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- ☐ Flip Chips, DSPs, BGAs, PPGAs
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik /

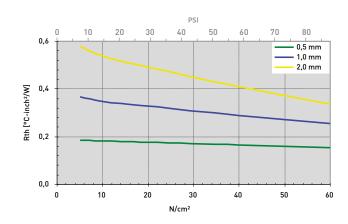
Embedded-Boards

EIGENSCHAFT	EINHEIT	TGF-WSS0500-SI	TGF-WSS1000-SI	TGF-WSS2000-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Grau	Grau	Grau
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20
Härte	Shore 00	55	55	55
Entflammbarkeit	UL 94	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,16 (0,41)	0,30 (0,75)	0,41 (1,32)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,18 (0,46)	0,32 (0,85)	0,49 (1,59)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,19 (0,48)	0,36 (0,93)	0,56 (1,80)
Thermische Leitfähigkeit ¹	W/mK	5,5	5,5	5,5
Betriebstemperaturbereich	°C	- 60 bis + 180	- 60 bis + 180	- 60 bis + 180
ELEKTRISCH				
Durchschlagsfestigkeit	kV / mm	10	10	10

 $1,0 \times 10^{13}$

Prüfmethode in Anlehnung an: 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.


 $1,0 \times 10^{13}$


Standarddicken: 0,5 mm / 1,0 mm / 2,0 mm

0hm - cm

Durchgangswiderstand

mm vs. N/cm² (PSI) / Rth vs. N/cm² (PSI)

 $1,0 \times 10^{13}$

SILIKON GAP-FILLER PAD TGF-DXS-SI-GF

ultra weich, mit Glasfaserverstärkung

TGF-DXS-SI-GF ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine gute thermische Leitfähigkeit. Durch seine ultra Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei minimalem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Die auf einer Seite aufgebrachte glasfaserverstärkte und thermisch leitfähige Silikonfolie sorgt für eine erhöhte mechanische Stabilität und Festigkeit.

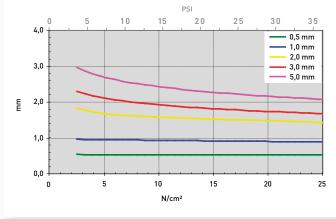
EIGENSCHAFTEN

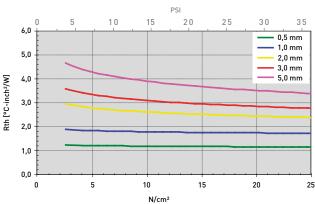
- Ultra weich und formanpassungsfähig
- Wärmeleitfähigkeit: 1,3 W/mK
- Wirkung bei minimalem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- Einseitig selbsthaftend

LIEFERFORMEN

- Matte 200 x 400 mm
- ☐ Einseitig haftend durch Glasfaserlaminat (TGF-DXSXXXX-SI-GF)
- ☐ Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

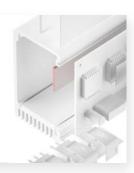

Thermische Anbindung von z.B.


- SMD Bauteilen
- ☐ Through-hole Vias
- Kondensatoren
- Bauelementen an Heat Pipes z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-DXS1000- SI-GF	TGF-DXS2000- SI-GF	TGF-DXS3000- SI-GF	TGF-DXS5000- SI-GF
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Weiss / Rosa	Weiss / Rosa	Weiss / Rosa	Weiss / Rosa
Verstärkung		Glasfaser- laminat	Glasfaser- laminat	Glasfaser- laminat	Glasfaser- laminat
Dicke	mm	1,0 +0.10	2,0 +0,20	3,0 +0,30	5,0 ^{+0,50} _{-0,05}
Härte	Shore 00	5	5	5	5
Entflammbarkeit	UL 94	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand¹ @ 250 kPa @ Dicke	°C-inch²/W (mm)	1,77 (0,94)	2,43 (1,40)	2,80 (1,65)	3,40 (2,10)
Widerstand¹ @ 100 kPa @ Dicke	°C-inch²/W (mm)	1,85 (0,95)	2,70 (1,60)	3,10 (1,95)	3,95 (2,55)
Widerstand¹ @ 50 kPa @ Dicke	°C-inch²/W (mm)	1,86 (0,97)	2,80 (1,70)	3,30 (2,20)	4,40 (2,70)
Thermische Leitfähigkeit	W/mK	1,3	1,3	1,3	1,3
Betriebstemperaturbereich	°C	- 40 bis + 180			
ELEKTRISCH					
Durchschlagsfestigkeit	kV / mm	6	6	6	6
Durchgangswiderstand	0hm - cm	6,2 x 10 ¹⁵			
Dielektrizitätskonstante	@ 1 MHz	5,27	5,27	5,27	5,27

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 2,0 mm / 3,0 mm / 4,0 mm / 5,0 mm / 6,0 mm / 7,0 mm / 8,0 mm / 9,0 mm / 10,0 mm mm vs. N/cm² (PSI) / Rth vs. N/cm² (PSI)



SILIKON GAP-FILLER PAD TGF-EXS-SI-GF

ultra weich, mit Glasfaserverstärkung

TGF-EXS-SI-GF ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine gute thermische Leitfähigkeit. Durch seine ultra Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt bei minimalem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Die auf einer Seite aufgebrachte glasfaserverstärkte und thermisch leitfähige Silikonfolie sorgt für eine erhöhte mechanische Stabilität und Festigkeit.

EIGENSCHAFTEN

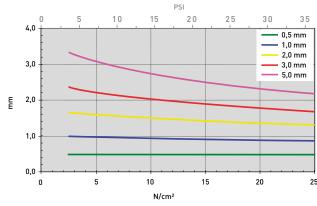
- Ultra weich und formanpassungsfähig
- Wärmeleitfähigkeit: 1,4 W/mK
- Wirkung bei minimalem Druck
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- Einseitig selbsthaftend

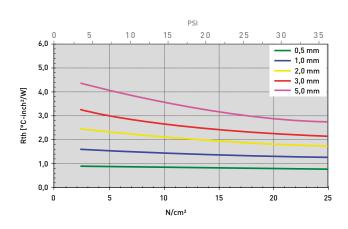
LIEFERFORMEN

- Matte 300 x 400 mm
- Einseitig haftend durch Glasfaserlaminat (TGF-EXSXXXX-SI-GF)
- ☐ Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- ☐ SMD Bauteilen
- Through-hole Vias
- Kondensatoren
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik /
- Industriecomputer


EIGENSCHAFT	EINHEIT	TGF-EXS0500- SI-GF	TGF-EXS1000- SI-GF	TGF-EXS2000- SI-GF	TGF-EXS3000- SI-GF	TGF-EXS5000- SI-GF
MATERIAL		Silikon mit Keramikfüllung				
Farbe		Rotbraun / Grau				
Verstärkung		Glasfaserlaminat	Glasfaserlaminat	Glasfaserlaminat	Glasfaserlaminat	Glasfaserlaminat
Dicke	mm	0,5 ±0,10	1,0 ±0,15	2,0 ±0,25	3,0 ±0,25	5,0 ±0,30
Härte	Shore 00	10	10	10	10	10
Entflammbarkeit	UL 94	V0	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja	Ja
THERMISCH						
Widerstand¹ @ 250 kPa @ Dicke	°C-inch²/W (mm)	0,76 (0,46)	1,26 (0,86)	1,73 (1,30)	2,14 (1,68)	2,73 (2,17)
Widerstand¹ @ 100 kPa @ Dicke	°C-inch²/W (mm)	0,85 (0,47)	1,44 (0,92)	2,07 (1,50)	2,63 (2,03)	3,58 (2,72)
Widerstand¹ @ 50 kPa @ Dicke	°C-inch²/W (mm)	0,89 (0,48)	1,54 (0,95)	2,31 (1,58)	3,00 (2,20)	4,08 (3,06)
Thermische Leitfähigkeit¹	W/mK	1,4	1,4	1,4	1,4	1,4
Betriebstemperaturbereich	°C	- 40 bis + 180				
ELEKTRISCH						
Durchschlagsfestigkeit	kV / mm	20	20	20	20	20

Prüfmethode in Anlehnung an: 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 3,0 mm / 4,0 mm / 5,0 mm

SILIKON GAP-FILLER TGF-YP-SI

plastisch

TGF-YP-SI ist ein elektrisch isolierender, thermisch extrem leitfähiger Gap-Filler aus Silikon, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine außerordentlich hohe thermische Leitfähigkeit. Durch seine Weichheit und plastische Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei sehr geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

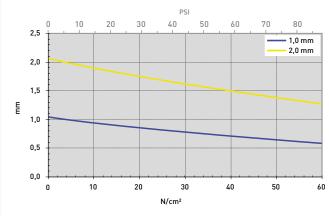
EIGENSCHAFTEN

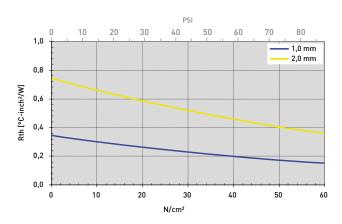
- Plastisch
- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 7,0 W/mK
- Wirkung bei sehr niedrigem Druck
- Extrem alterungs-/chemisch beständig
- Beidseitig selbsthaftend

LIEFERFORMEN

- Matte 460 x 100 mm
- Beidseitig haftend (TGF-YPXXXX-SI)
- ☐ Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- SMD Bauteilen
- ☐ Through-hole Vias
- Kondensatoren
- ☐ Bauelementen an Heat-Pipes
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-YP1000-SI	TGF-YP2000-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Grau	Grau
Dicke	mm	1,0 ±0,10	2,0 ±0,20
Härte	Shore 00	55	55
Entflammbarkeit (Äquivalent)	UL 94	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja
THERMISCH			
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,20 (0,75)	0,45 (1,50)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,27 (0,90)	0,59 (1,75)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,32 (0,95)	0,67 (1,90)
Thermische Leitfähigkeit	W/mK	7,0	7,0
Betriebstemperaturbereich	°C	- 40 bis + 150	- 40 bis + 150
ELEKTRISCH			
Durchschlagsfestigkeit	kV/mm	>10	>10
Dielektrizitätskonstante	@ 1 MHz	7	7
Durchgangswiderstand	0hm - cm	> 1,0 x 10 ¹²	> 1,0 x 10 ¹²

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 1,0 mm / 2,0 mm / 3,0 mm

SILIKON GAP-FILLER TGF-ZP-SI

plastisch

TGF-ZP-SI ist ein elektrisch isolierender, thermisch leitfähiger Gap-Filler aus Silikon, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Durch die Formulierung und Füllung des Silikonelastomers mit Keramikpulver ergibt sich eine extrem hohe thermische Leitfähigkeit. Durch seine extreme Weichheit und plastische Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt fast ohne Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

EIGENSCHAFTEN

- Plastisch
- Extrem weich und formanpassungsfähig
- Wärmeleitfähigkeit: 11 W/mK
- ☐ Fast drucklose Wirkung
- ☐ Für minimale Spaltgrößen
- Extrem alterungs-/chemisch beständig
- Leichte Vormontage durch Selbsthaftung

LIEFERFORMEN

- ☐ Matte 200 x 300 mm
- Beidseitig haftend (TGF-ZPXXXX-SI)
- ☐ Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- ☐ SMD Bauteilen
- ☐ Through-hole Vias
- RDRAM Speicherbausteine
- Kondensatoren
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Embedded-Boards

EIGENSCHAFT	EINHEIT	TGF-ZP1500-SI	TGF-ZP2000-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Hellgrau	Hellgrau
Verstärkung		Keine	Keine
Dicke	mm	1,5 +0,50	2,0 + 0,70
Dichte	g/cm³	3,3	3,3
Entflammbarkeit	UL 94	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja
THERMISCH			
Widerstand¹ @ 1,5 mm	°C-inch²/W		0,24
Widerstand¹ @ 0,8 mm	°C-inch²/W	0,14	0,14
Widerstand¹ @ 0,5 mm	°C-inch²/W	0,10	0,10
Widerstand¹ @ 0,2 mm	°C-inch²/W	0,06	0,06
Thermische Leitfähigkeit	W/mK	11	11
Betriebstemperaturbereich	°C	- 50 bis + 180	- 50 bis + 180
ELEKTRISCH			
Durchschlagsfestigkeit	kV / mm	11	11
Dielektrizitätskonstante	@ 1 MHz	7,5	7,5
Volumenwiderstand	0hm - cm	7,0 x 10 ⁷	7,0 x 10 ⁷

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 1,5 mm / 2,0 mm

SILIKON GAP-FILLER PAD TEL-R-SI

hoch thermisch leitfähiges Elastomer / minimierte volatile Siloxane (LV)

TEL-R-SI ist ein gering dielektrischer und extrem wärmeleitender Gap-Filler zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen auch über größere Spaltmaße oder größere Toleranzen. Durch die Formulierung und spezielle Füllung des LV Silikons ergibt sich eine außerordentlich hohe anisotrope thermische Leitfähigkeit. Durch seine extreme Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt bei sehr geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Das Elastomer weist eine geringe dielektrische Durchschlagsfestigkeit auf.

EIGENSCHAFTEN

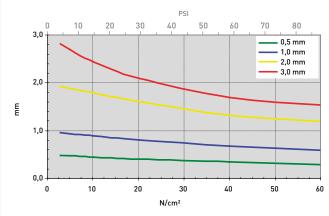
- Extrem weich und formanpassungsfähig
- ☐ Minimierter volatiler Siloxananteil (LV)
- Wärmeleitfähigkeit: 15 W/mK (anisotrop)
- Gering dielektrisch
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend

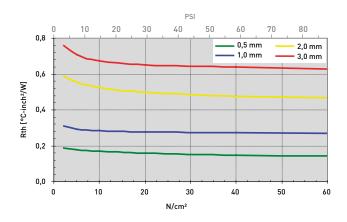
LIEFERFORMEN

- ☐ Matte 150 x150 mm (Dicke 0,25 –1,5 mm)
- ☐ Matte 140 x 140 mm
- (Dicke 2,0 3,0 mm)

 Beidseitig selbsthaftend
- (TEL-RXXXX-SI)
- ☐ Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- MOSFETs und IGBTs
- Dioden und Gleichrichter
- Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TEL-R0500-SI	TEL-R1000-SI	TEL-R2000-SI
MATERIAL		Silikon mit thermisch hoch leitenden Füllern	Silikon mit thermisch hoch leitenden Füllern	Silikon mit thermisch hoch leitenden Füllern
Farbe		Schwarz	Schwarz	Schwarz
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20
Härte	Shore 00	55	55	55
Entflammbarkeit	UL 94	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand¹ @ 600 kPa @ Dicke	°C-inch²/W (mm)	0,15 (0,30)	0,27 (0,60)	0,47 (1,20)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,16 (0,41)	0,28 (0,81)	0,50 (1,61)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,18 (0,47)	0,29 (0,93)	0,54 (1,85)
Thermische Leitfähigkeit	W/mK	15	15	15
Betriebstemperaturbereich	°C	- 50 bis + 180	- 50 bis + 180	- 50 bis + 180
ELEKTRISCH				
Durchschlagsfestigkeit	kV/mm	1,0	1,0	1,0
Durchgangswiderstand	Ohm - cm	≥ 1 x 10 ¹²	≥ 1 x 10 ¹²	≥ 1 x 10 ¹²

Prüfmethode in Anlehnung an: ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,25 mm / 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 3,0 mm

SILIKON GAP-FILLER PAD TEL-Z-SI

hoch thermisch leitfähiges Elastomer / minimierte volatile Siloxane (LV)

TEL-Z-SI ist eine elektrisch nicht isolierende und extrem wärmeleitende LV Silikonfolie zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen auch über größere Spaltmaße oder größere Toleranzen. Durch die Formulierung und spezielle Füllung des Materials ergibt sich eine extrem hohe anisotrope thermische Leitfähigkeit. Durch seine Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt bei geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert.

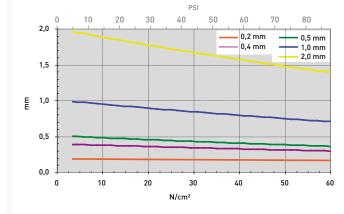
EIGENSCHAFTEN

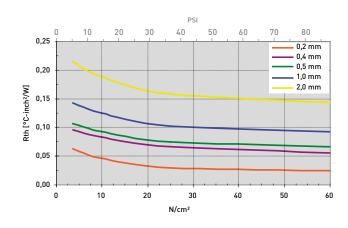
- Weich und formanpassungsfähig
- Minimierter volatiler Siloxananteil (LV)
- Elektrisch nicht isolierend
- Keine Lackabweisung
- Wärmeleitfähigkeit: 50 W/mK (anisotrop)
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend

LIEFERFORMEN

- ☐ Matte 140 x 140 mm (TEL-ZXXXX-SI)
- Als lose Einzelteile
- Optional mit Klebestreifen oder -punkten (TEL-ZXXXX-SI-A1)

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- MOSFETs und IGBTs
- Dioden und Gleichrichter
- Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TEL-Z0200-SI	TEL-Z0500-SI	TEL-Z1000-SI
MATERIAL		Grafit gefülltes Silikonelastomer	Grafit gefülltes Silikonelastomer	Grafit gefülltes Silikonelastomer
Farbe		Schwarz	Schwarz	Schwarz
Dicke	mm	0,2 ±0,05	0,5 ±0,05	1,0 ±0,10
Härte	Shore 00	75	75	75
Keine Lackabweisung (LABS) ¹		Ja	Ja	Ja
Entflammbarkeit	UL 94	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand ² @ 600 kPa @ Dicke	°C-inch²/W (mm)	0,020 (0,16)	0,060 (0,33)	0,09 (0,70)
Widerstand ² @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,027 (0,18)	0,075 (0,48)	0,11 (0,91)
Widerstand ² @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,050 (0,19)	0,095 (0,49)	0,13 (0,97)
Thermische Leitfähigkeit	W/mK	50	50	50
Betriebstemperaturbereich	°C	- 50 bis + 180	- 50 bis + 180	- 50 bis + 180
ELEKTRISCH				
Durchgangswiderstand	Ohm - cm	< 50.000	< 50.000	< 50.000

Prüfmethode in Anlehnung an: ¹P-VW 3-10.7 57650 Temp. Test, ²ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50 % rel. Feuchte.

Standarddicken: 0,2 mm / 0,4 mm / 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm

SILIKON GAP-FILLER PAD TEL-YSS-SI

sehr weich, hoch thermisch leitfähiges Elastomer / minimierte volatile Siloxane (LV)

TEL-YSS-SI ist ein elektrisch nicht isolierender und extrem wärmeleitender Gap-Filler zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen auch über größere Spaltmaße oder größere Toleranzen. Durch die Formulierung und spezielle Füllung des LV Silikons ergibt sich eine extrem hohe anisotrope thermische Leitfähigkeit. Durch seine ausserordentliche Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt bei geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert.

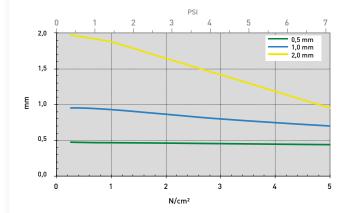
EIGENSCHAFTEN

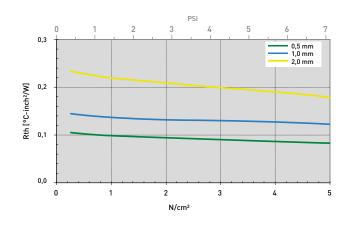
- Ausserordentlich weich und formanpassungsfähig
- ☐ Minimierter volatiler Siloxananteil (LV)
- Elektrisch nicht isolierend
- Wärmeleitfähigkeit: 16 W/mK (anisotrop)
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend

LIEFERFORMEN

- ☐ Matte 130 x 130 mm (TEL-YSSXXXX-SI)
- Als lose Einzelteile
- Optional mit Klebestreifen oder -punkten (TEL-YSSXXXX-SI-A1)

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- MOSFETs und IGBTs
- Dioden und Gleichrichter
- Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TEL-YSS0500-SI	TEL-YSS1000-SI	TEL-YSS2000-SI
MATERIAL		Grafit gefülltes Silikonelastomer	Grafit gefülltes Silikonelastomer	Grafit gefülltes Silikonelastomer
Farbe	••••••	Schwarz	Schwarz	Schwarz
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20
Härte	Shore 00	40	40	40
Entflammbarkeit	UL 94	V0	V0	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand¹ @ 50 kPa @ Dicke	°C-inch²/W (mm)	0,083 (0,42)	0,124 (0,700)	0,180 (0,954)
Widerstand¹ @ 25 kPa @ Dicke	°C-inch²/W (mm)	0,089 (0,45)	0,129 (0,785)	0,205 (1,550)
Widerstand¹ @ 12 kPa @ Dicke	°C-inch²/W (mm)	0,100 (0,47)	0,137 (0,934)	0,220 (1,874)
Thermische Leitfähigkeit¹	W/mK	16	16	16
Betriebstemperaturbereich	°C	- 50 bis + 180	- 50 bis + 180	- 50 bis + 180
ELEKTRISCH				
Durchgangswiderstand	Ohm - cm	< 50.000	< 50.000	< 50.000

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50 % rel. Feuchte.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 3,0 mm

SILIKON GAP-FILLER PAD TEL-ZS-SI

weich, hoch thermisch leitfähiges Elastomer / minimierte volatile Siloxane (LV)

TEL-ZS-SI ist eine elektrisch nicht isolierende und extrem wärmeleitende LV Silikonfolie zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen auch über größere Spaltmaße oder größere Toleranzen. Durch die Formulierung und spezielle Füllung des Materials ergibt sich eine extrem hohe anisotrope thermische Leitfähigkeit. Durch seine hohe Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt bei geringem Druck erreicht. Dadurch wird der thermische Gesamtübergangswiderstand minimiert.

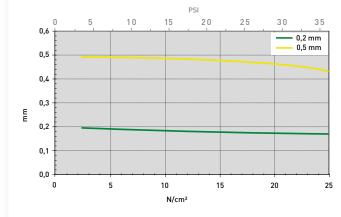
EIGENSCHAFTEN

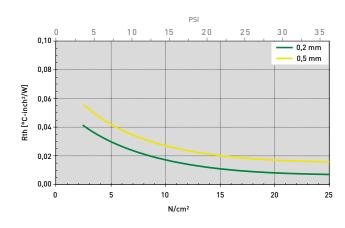
- Weich und formanpassungsfähig
- Minimierter volatiler Siloxananteil (LV)
- Elektrisch nicht isolierend
- Wärmeleitfähigkeit: 20 W/mK (anisotrop)
- Extrem alterungs-/chemisch beständig
- Vibrationsdämpfend

LIEFERFORMEN

- ☐ Matte 120 x 120 mm (TEL-ZSXXXX-SI)
- Als lose Einzelteile
- Optional mit Klebestreifen oder -punkten (TEL-ZSXXXX-SI-A1)

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- MOSFETs und IGBTs
- Dioden und Gleichrichter
- Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TEL-ZS0200-SI	TEL-ZS0500-SI
MATERIAL		Karbon gefülltes Silikonelastomer	Karbon gefülltes Silikonelastomer
Farbe		Schwarz	Schwarz
Dicke	mm	0,2 ±0,05	0,5 ±0,05
Härte	Shore 00	60	60
Entflammbarkeit (Äquivalent)	UL 94	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja
THERMISCH			
Widerstand¹ @ 250 kPa @ Dicke	°C-inch²/W (mm)	0,007 (0,17)	0,018 (0,44)
Widerstand¹ @ 100 kPa @ Dicke	°C-inch²/W (mm)	0,017 (0,18)	0,027 (0,48)
Widerstand¹ @ 50 kPa @ Dicke	°C-inch²/W (mm)	0,030 (0,19)	0,042 (0,49)
Thermische Leitfähigkeit'	W/mK	20	20
Betriebstemperaturbereich	°C	- 40 bis + 150	- 40 bis + 150
ELEKTRISCH			
Durchgangswiderstand	0hm - cm	< 50.000	< 50.000

Testmethode: ¹ ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50 % rel. Feuchte.

Standarddicken: 0,2 mm / 0,3 mm / 0,5 mm

2K SILIKON GAP-FILLER TDG-L-SI-2C-Y

dispensierbar / 2 komponentig / minimierte volatile Siloxane (LV) / Form-in-Place

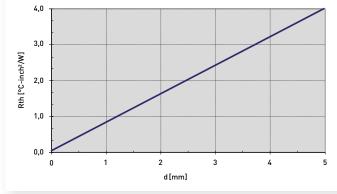
TDG-L-SI-2C-Y ist ein dispensierbarer, mit wärmeleitenden Füllstoffen formulierter, temperaturbeständiger 2-Komponenten Gap Filler auf LV Silikonbasis. Nach der Aushärtung bleibt das System zähelastisch. Der Gap Filler zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Ausgleich von extremen Toleranzen und Spalten vor allem bei nicht planaren Aufbauten. Sein thixotropisches Verhalten erlaubt eine genaue Positionierung und platzierte Aushärtung. Das Elastomer haftet leicht an Oberflächen, wodurch sich zusätzlich ein guter thermischer Kontakt ergibt. Dadurch, dass der volatile Siloxananteil minimal ist, lässt sich das Material vorteilhaft in Umgebungen einsetzen, wo Silikon und Lackabweisung kritisch sind.

EIGENSCHAFTEN

- Dispensierbares zweikomponentiges Silikon
- Minimierter volatiler Siloxananteil (LV)
- Keine Lackabweisung
- Wärmeleitfähigkeit: 2,0 W/mK
- Zähelastisch nach Aushärtung
- Minimale Spannungen auf Bauelemente
- Wärme beschleunigte Aushärtung
- Vibrationsdämpfend

LIEFERFORMEN

- Optional in blauer Farbe: TDG-L-SI-2C
- Kartuschen 2 x 25 ml / 2 x 100 ml / 2 x 200 ml / 2 x 600 ml
- ☐ Eimer 2 x 25 kg / 2 x 35 kg
- Auf Anfrage


ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- Heat Pipes
- BGA
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	A-KOMPONENTE	B-KOMPONENTE
MATERIAL		Silikon	Silikon
Farbe	••••••••••••	Gelb	Weiss
Dichte @ 25 °C (gemischt)	g/cm³	1,9	1,9
Mischungsverhältnis	Gew. oder Vol.	1:1	1:1
Härte	Shore 00	52	52
Viskosität (Brookfield @ 10 rpm, 25 °C)	Pas	260	260
Viskosität (gemischt) (Brookfield @ 10 rpm, 25 °C)	Pas	260	260
Topfzeit @ 25 °C und 65 % RH (Zeit bis doppelte Viskosität)	Minuten	> 120	> 120
Aushärtezeit @ 25 °C / 100 °C	••••••	< 24 h / 15-30 min	< 24 h / 15-30 min
Haltbarkeit (ab Herstelldatum, ungeöffnet @ < 35°C)	Monate	6	6
Ausgasung ¹	TML/CVCM/WVR%	0,16 / 0,03 / 0,04	0,16 / 0,03 / 0,04
Keine Lackabweisung (LABS)²		Ja	Ja
Entflammbarkeit	UL 94	VO	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja
TECHNISCH			
Thermische Leitfähigkeit³	W/mK	2,0	2,0
Betriebstemperaturbereich	°C	- 50 bis + 150	- 50 bis + 150
Durchschlagsfestigkeit	kV/mm	> 10	> 10
Durchgangswiderstand	0hm - cm	> 1 x 10 ¹⁰	> 1 x 10 ¹⁰

Prüfmethode in Anlehnung an: ¹ASTM E 595,² P-VW 3-10.7 57650 Temp. Test, ³ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Hinweis: Es dürfen nur A und B Komponente des gleichen Loses gemischt werden.

2K SILIKON GAP-FILLER TDG-T-SI-2C

dispensierbar / 2 komponentig / minimierte volatile Siloxane (LV) / Form-in-Place

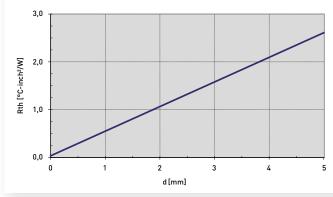
TDG-T-SI-2C ist ein dispensierbarer, mit wärmeleitenden Füllstoffen formulierter, temperaturbeständiger 2-Komponenten Gap Filler auf LV Silikonbasis. Nach der Aushärtung bleibt das System zähelastisch. Der Gap Filler zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Ausgleich von extremen Toleranzen und Spalten vor allem bei nicht planaren Aufbauten. Sein thixotropisches Verhalten erlaubt eine genaue Positionierung und platzierte Aushärtung. Das Elastomer haftet leicht an Oberflächen, wodurch sich zusätzlich ein guter thermischer Kontakt ergibt. Dadurch, dass der volatile Siloxananteil minimal ist, lässt sich das Material vorteilhaft in Umgebungen einsetzen, wo Silikon und Lackabweisung kritisch sind.

EIGENSCHAFTEN

- Dispensierbares zweikomponentiges Silikon
- Minimierter volatiler Siloxananteil (LV)
- Keine Lackabweisung
- Wärmeleitfähigkeit: 3,0 W/mK
- Zähelastisch nach Aushärtung
- Minimale Spannungen auf Bauelemente
- Wärme beschleunigte Aushärtung
- Vibrationsdämpfend

LIEFERFORMEN

- Kartuschen 2 x 25 ml / 2 x 100 ml / 2 x 200 ml / 2 x 600 ml
- Eimer 2 x 25 kg / 2 x 35 kg
- Auf Anfrage


ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- Heat Pipes
- BGA
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	A-KOMPONENTE	B-KOMPONENTE
MATERIAL		Silikon	Silikon
Farbe		Blau	Weiss
Dichte @ 25 °C (gemischt)	g/cm³	2,75	2,75
Mischungsverhältnis	Gew. oder Vol.	1:1	1:1
Härte	Shore 00	55	55
Viskosität (Brookfield @ 10 rpm, 25 °C)	Pas	290	260
Viskosität (gemischt) (Brookfield @ 10 rpm, 25 °C)	Pas	275	275
Topfzeit @ 25 °C und 65 % RH (Zeit bis doppelte Viskosität)	Minuten	> 120	> 120
Aushärtezeit @ 25 °C / 100 °C		<15 h / 15-30 min	<15 h / 15-30 min
Haltbarkeit (ab Herstelldatum, ungeöffnet @ < 35 °C)	Monate	6	6
Ausgasung ¹	TML/CVCM/WVR%	0,07 / 0,02 / 0,02	0,07 / 0,02 / 0,02
Keine Lackabweisung (LABS)²		Ja	Ja
Entflammbarkeit	UL 94	VO	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja
TECHNISCH			
Thermische Leitfähigkeit³	W/mK	3,0	3,0
Betriebstemperaturbereich	°C	- 50 bis + 150	- 50 bis + 150
Durchschlagsfestigkeit	kV/mm	> 10	> 10
Durchgangswiderstand	Ohm - cm	> 1 x 10 ¹⁰	> 1 x 10 ¹⁰

Prüfmethode in Anlehnung an: ¹ASTM E 595,² P-VW 3-10.7 57650 Temp. Test, ³ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Hinweis: Es dürfen nur A und B Komponente des gleichen Loses gemischt werden.

2K SILIKON GAP-FILLER TDG-U-SI-2C

 ${\it dispensierbar\,/\,2\,komponentig\,/\,minimierte\,volatile\,Siloxane\,(LV)\,\,/\,Form-in-Place}$

TDG-U-SI-2C ist ein dispensierbarer, mit wärmeleitenden Füllstoffen formulierter, temperaturbeständiger 2-Komponenten Gap Filler auf LV Silikonbasis. Nach der Aushärtung bleibt das System zähelastisch. Der Gap Filler zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Ausgleich von extremen Toleranzen und Spalten vor allem bei nicht planaren Aufbauten. Sein thixotropisches Verhalten erlaubt eine genaue Positionierung und platzierte Aushärtung. Das Elastomer haftet leicht an Oberflächen, wodurch sich zusätzlich ein guter thermischer Kontakt ergibt. Dadurch, dass der volatile Siloxananteil minimal ist, lässt sich das Material vorteilhaft in Umgebungen einsetzen, wo Silikon und Lackabweisung kritisch sind.

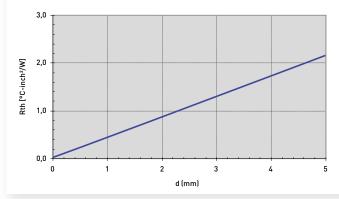
EIGENSCHAFTEN

- Dispensierbares zweikomponentiges Silikon
- Minimierter volatiler Siloxananteil (LV)
- Keine Lackabweisung
- Wärmeleitfähigkeit: 3,6 W/mK
- Zähelastisch nach Aushärtung
- Minimale Spannungen auf Bauelemente
- Wärme beschleunigte Aushärtung
- Vibrationsdämpfend

LIEFERFORMEN

- Kartuschen 2 x 25 ml / 2 x 100 ml / 2 x 200 ml / 2 x 600 ml
- Eimer 2 x 25 kg / 2 x 35 kg
- Auf Anfrage

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- ☐ Heat Pipes
- BGA

z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	A-KOMPONENTE	B-KOMPONENTE
MATERIAL		Silikon	Silikon
Farbe	• • • • • • • • • • • • • • • • • • • •	Hellblau	Weiss
Dichte @ 25 °C (gemischt)	g/cm³	2,85	2,85
Mischungsverhältnis	Gew. oder Vol.	1:1	1:1
Härte	Shore 00	38	38
Viskosität (Brookfield @ 10 rpm, 25 °C)	Pas	220	190
Viskosität (gemischt) (Brookfield @ 10 rpm, 25 °C)	Pas	260	260
Topfzeit @ 25 °C und 65 % RH (Zeit bis doppelte Viskosität)	Minuten	> 100	> 100
Aushärtezeit @ 25 °C / 100 °C	•	<15 h / 15-30 min	<15 h / 15-30 min
Haltbarkeit (ab Herstelldatum, ungeöffnet @ < 35 °C)	Monate	6	6
Ausgasung ¹	TML/CVCM/WVR%	0,07 / 0,02 / 0,04	0,07 / 0,02 / 0,04
Keine Lackabweisung (LABS)²	•	Ja	Ja
Entflammbarkeit	UL 94	V0	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja
TECHNISCH			
Thermische Leitfähigkeit³	W/mK	3,6	3,6
Betriebstemperaturbereich	°C	- 50 bis + 150	- 50 bis + 150
Durchschlagsfestigkeit	kV/mm	> 10	> 10
Durchgangswiderstand	0hm - cm	> 1 x 10 ¹⁰	> 1 x 10 ¹⁰

Prüfmethode in Anlehnung an: ¹ASTM E 595,² P-VW 3-10.7 57650 Temp. Test, ³ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Hinweis: Es dürfen nur A und B Komponente des gleichen Loses gemischt werden.

2K SILIKON GAP-FILLER TDG-W-SI-2C

 ${\it dispensierbar\,/\,2\,komponentig\,/\,minimierte\,volatile\,Siloxane\,(LV)\,/\,Form-in-Place}$

TDG-W-SI-2C ist ein dispensierbarer, mit wärmeleitenden Füllstoffen formulierter, temperaturbeständiger 2-Komponenten Gap Filler auf LV Silikonbasis. Nach der Aushärtung bleibt das System zähelastisch. Der Gap Filler zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Ausgleich von extremen Toleranzen und Spalten vor allem bei nicht planaren Aufbauten. Sein thixotropisches Verhalten erlaubt eine genaue Positionierung und platzierte Aushärtung. Das Elastomer haftet leicht an Oberflächen, wodurch sich zusätzlich ein guter thermischer Kontakt ergibt. Dadurch, dass der volatile Siloxananteil minimal ist, lässt sich das Material vorteilhaft in Umgebungen einsetzen, wo Silikon und Lackabweisung kritisch sind.

EIGENSCHAFTEN

- Dispensierbares zweikomponentiges Silikon
- Minimierter volatiler Siloxananteil (LV)
- Keine Lackabweisung
- Wärmeleitfähigkeit: 4,5 W/mK
- Zähelastisch nach Aushärtung
- Minimale Spannungen auf Bauelemente
- Wärme beschleunigte Aushärtung
- Vibrationsdämpfend

LIEFERFORMEN

- Kartuschen 2 x 25 ml / 2 x 100 ml / 2 x 200 ml / 2 x 600 ml
- □ Eimer 2 x 25 kg
- Auf Anfrage

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- Heat Pipes
- BGA

z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	A-KOMPONENTE	B-KOMPONENTE	
MATERIAL		Silikon	Silikon	
Farbe	•••••	Rosa	Weiss	
Dichte @ 25 °C (gemischt)	g/cm³	3,15	3,15	
Mischungsverhältnis	Gew. oder Vol.	1:1	1:1	
Härte	Shore 00	55	55	
Viskosität (Brookfield @ 10 rpm, 25 °C)	Pas	250	250	
Viskosität (gemischt (Brookfield @ 10 rpm, 25 °C))	Pas	250	250	
Topfzeit @ 25 °C und 65 % RH (Zeit bis doppelte Viskosität)	Minuten	> 120	> 120	
Aushärtezeit @ 25 °C / 100 °C		< 24 h / 15-30 min	< 24 h / 15-30 min	
Haltbarkeit (ab Herstelldatum, ungeöffnet @ < 35 °C)	Monate	6	6	
Keine Lackabweisung (LABS)¹		Ja	Ja	
Entflammbarkeit	UL 94	V0 (≥ 0,15 mm)	V0 (≥ 0,15 mm)	
RoHS Konformität	2015 / 863 / EU	Ja	Ja	
TECHNISCH				
Thermische Leitfähigkeit²	W/mK	4,5	4,5	
Betriebstemperaturbereich	°C	- 40 bis + 150	- 40 bis + 150	
Durchschlagsfestigkeit	kV/mm	> 10	> 10	
Durchgangswiderstand	0hm - cm	> 1 x 10 ¹⁰	> 1 x 10 ¹⁰	

Prüfmethode in Anlehnung an: ¹P-VW 3-10.7 57650 Temp. Test, ²ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Hinweis: Es dürfen nur A und B Komponente des gleichen Loses gemischt werden.

SILIKON GAP-FILLER / PUTTY TGL-W-SI

dispensierbar

TGL-W-SI ist ein elektrisch isolierender, thermisch leitfähiger, hochviskoser und dispensierbarer Form-in-Place Gap-Filler mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Der fertige Compound erfordert keinen zusätzlichen Aushärteprozess. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine sehr hohe thermische Leitfähigkeit. Bei Aufbringung des dispensierbaren, viskoplastischen Materials wird ein optimaler thermischer Kontakt ohne Druckaufbringung erzielt. Durch seinen Einsatz wird der thermische Gesamtübergangswiderstand minimiert.

EIGENSCHAFTEN

- ☐ Fast drucklose Aufbringung durch Viskoplastizität
- Wärmeleitfähigkeit: 5,5 W/mK
- Ausgehärtet, kein zusätzlicher Aushärteprozess

LIEFERFORMEN

- ☐ Kartuschen 30 ml
- ☐ Tube 250 g
- Behälter 2 kg
- Auf Anfrage

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- SMD Bauteilen
- ☐ Through-hole Vias
- ☐ RDRAM Speicherbausteine
- ☐ Flip Chips, DSPs, BGAs, PPGAs z.B. in Automotiveanwendungen / Notebooks / Medizintechnik /

Industriecomputer

EIGENSCHAFT	EINHEIT	TGL-W-SI
MATERIAL		Keramik gefüllter Silikoncompound
Farbe		Grau
Dichte	g/cm³	3,1
Penetration	mm/10	290
RoHS Konformität	2015 / 863 / EU	Ja
THERMISCH		
Thermische Leitfähigkeit	W/mK	5,5
Betriebstemperaturbereich	°C	- 40 bis + 150
ELEKTRISCH		
Durchschlagsfestigkeit	kV/mm	10
Durchgangswiderstand	0hm - cm	1,0 x 10 ¹³

Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

SILIKONFREIES GAP-FILLER PAD TGF-R-NS

ausscheidungsfrei, weiches Akrylat

TGF-R-NS ist ein elektrisch isolierender, thermisch sehr leitfähiger, silikonfreier Gap-Filler, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Das Akrylat Basismaterial enthält keine flüchtigen Siloxane, die bei Silikonelastomeren freigesetzt werden. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine sehr hohe thermische Leitfähigkeit. Durch seine Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei geringem Druck erreicht. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

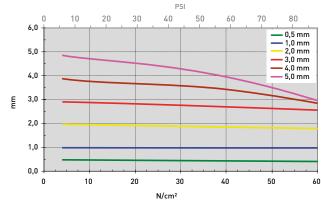
EIGENSCHAFTEN

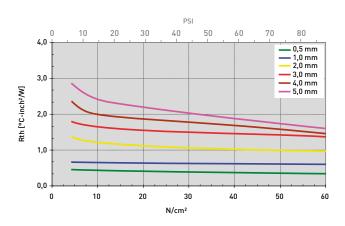
- ☐ Silikonfreies Akrylat
- Keine flüchtigen Silioxane
- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 3,0 W/mK
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung

LIEFERFORMEN

- Matte 400 x 200 mm
- Beidseitig haftend (TGF-RXXXX-NS)
- ☐ Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-R0500-NS	TGF-R1000-NS	TGF-R2000-NS	TGF-R3000-NS	TGF-R5000-NS
MATERIAL		Silikonfreies Akry- lat Elastomer mit Keramikfüllung				
Farbe	••••••	Blau	Blau	Blau	Blau	Blau
Dichte	g/cm³	2,9	2,9	2,9	2,9	2,9
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30	5,0 ±0,50
Härte	Shore 00	70	70	70	70	70
Entflammbarkeit (Äquivalent)	UL 94	V0	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja	Ja
THERMISCH						
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,38 (0,44)	0,63 (0,97)	1,03 (1,85)	1,47 (2,71)	1,87 (3,96)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,42 (0,46)	0,64 (0,98)	1,12 (1,91)	1,57 (2,81)	2,18 (4,53)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,45 (0,47)	0,65 (0,99)	1,25 (1,96)	1,72 (2,88)	2,60 (4,79)
Thermische Leitfähigkeit¹	W/mK	3,0	3,0	3,0	3,0	3,0
Betriebstemperaturbereich	°C	- 40 bis +130				
ELEKTRISCH						
Durchschlagsfestigkeit	kV / mm	7,8	7,8	7,8	7,8	7,8
Durchgangswiderstand	0hm - cm	1 x 10 ¹³	1 x 10 ¹¹			

Prüfmethode in Anlehnung an: 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 2,0 mm / 3,0 mm / 4,0 mm / 5,0 mm

SILIKONFREIES GAP-FILLER PAD TGF-V-NS

ausscheidungsfrei, weiches Akrylat

TGF-V-NS ist ein elektrisch isolierender, thermisch extrem leitfähiger, silikonfreier Gap-Filler, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Das Akrylat Basismaterial enthält keine flüchtigen Siloxane, die bei Silikonelastomeren freigesetzt werden. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine extrem hohe thermische Leitfähigkeit. Durch seine Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei geringem Druck erreicht. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Durch einen einseitig aufgebrachten transparenten Film ist das Material optional einseitig nicht haftend ausführbar.

EIGENSCHAFTEN

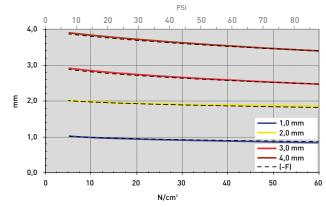
- Silikonfreies Akrylat
- Keine flüchtigen Silioxane
- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 5 W/mK
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- □ Ein- oder beidseitig selbsthaftend

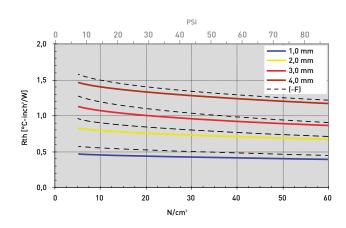
LIEFERFORMEN

- Matte 510 x 210 mm
- Beidseitig haftend (TGF-VXXXX-NS) ≥ 1,0 mm
- □ Einseitig haftend durch Filmlaminat (TGF-VXXXX-NS-F) > 0,5 mm
- ☐ Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik /


Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-V1000-NS	TGF-V2000-NS	TGF-V3000-NS	TGF-V4000-NS
MATERIAL		Silikonfreies Akrylat Elastomer mit Keramikfüllung	Silikonfreies Akrylat Elastomer mit Keramikfüllung	Silikonfreies Akrylat Elastomer mit Keramikfüllung	Silikonfreies Akrylat Elastomer mit Keramikfüllung
Farbe	***************************************	Hellgrün	Hellgrün	Hellgrün	Hellgrün
Dichte	g/cm³	2,89	2,89	2,89	2,89
Dicke	mm	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30	4,0 ±0,40
Härte	Shore 00	64	64	64	64
Entflammbarkeit (Äquivalent)	UL 94	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,42 (0,89)	0,73 (1,89)	0,93 (2,57)	1,25 (3,50)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,45 (0,93)	0,77 (1,93)	1,01 (2,72)	1,33 (3,70)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,47 (0,96)	0,83 (1,97)	1,11 (2,86)	1,44 (3,90)
Thermische Leitfähigkeit¹	W/mK	5	5	5	5
Betriebstemperaturbereich	°C	- 40 bis + 125			
ELEKTRISCH					
Durchschlagsfestigkeit	kV / mm	1,2	1,2	1,2	1,2
Durchgangswiderstand	0hm - cm	1 x 10 ¹¹			
Dielektrizitätskonstante	@ 1 MHz	18,2	18,2	18,2	18,2

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0.5 mm / 1.0 mm / 1.5 mm / 2.0 mm / 2.5 mm / 3.0 mm / 4.0 mm

SILIKONFREIES GAP-FILLER PAD TGF-W-NS

ausscheidungsfrei, weiches Akrylat

TGF-W-NS ist ein elektrisch isolierender, thermisch extrem leitfähiger, silikonfreier Gap-Filler, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Das Akrylat Basismaterial enthält keine flüchtigen Siloxane, die bei Silikonelastomeren freigesetzt werden. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine extrem hohe thermische Leitfähigkeit. Durch seine Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei geringem Druck erreicht. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

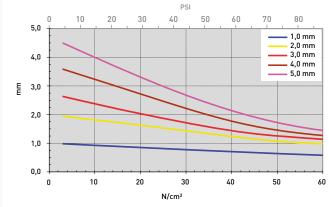
EIGENSCHAFTEN

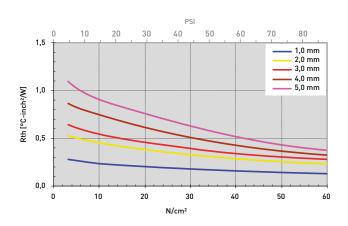
- Silikonfreies Akrylat
- Keine flüchtigen Silioxane
- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 6,0 W/mK
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung

LIEFERFORMEN

- Matte 400 x 200 mm
- Beidseitig haftend (TGF-WXXXX-NS)
- ☐ Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-W1000-NS	TGF-W2000-NS	TGF-W3000-NS	TGF-W4000-NS	TGF-W5000-NS
MATERIAL		Silikonfreies Akry- lat Elastomer mit Keramikfüllung				
Farbe		Pink	Pink	Pink	Pink	Pink
Dichte	g/cm³	3,1	3,1	3,1	3,1	3,1
Dicke	mm	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30	4,0 ±0,40	5,0 ±0,50
Härte	Shore 00	70	70	70	70	70
Entflammbarkeit (Äquivalent)	UL 94	V0	V0	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja	Ja
THERMISCH						
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,16 (0,67)	0,28 (1,19)	0,35 (1,43)	0,43 (1,74)	0,52 (2,12)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,22 (0,82)	0,39 (1,61)	0,46 (2,03)	0,62 (2,75)	0,77 (3,30)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,26 (0,93)	0,49 (1,83)	0,60 (2,50)	0,79 (3,40)	0,98 (4,20)
Thermische Leitfähigkeit ¹	W/mK	6,0	6,0	6,0	6,0	6,0
Betriebstemperaturbereich	°C	- 40 bis +130				
ELEKTRISCH						
Durchschlagsfestigkeit	kV / mm	7,8	7,8	7,8	7,8	7,8
Durchgangswiderstand	0hm - cm	1 x 10 ¹³				

Prüfmethode in Anlehnung an: 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 3,5 mm / 4,0 mm / 4,5 mm / 5,0 mm

SILIKONFREIES GAP-FILLER PAD TGF-Y-NS

ausscheidungsfrei, weiches Akrylat

TGF-Y-NS ist ein elektrisch isolierender, thermisch extrem leitfähiger, silikonfreier Gap-Filler, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Das Akrylat Basismaterial enthält keine flüchtigen Siloxane, die bei Silikonelastomeren freigesetzt werden. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine extrem hohe thermische Leitfähigkeit. Durch seine Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei geringem Druck erreicht. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

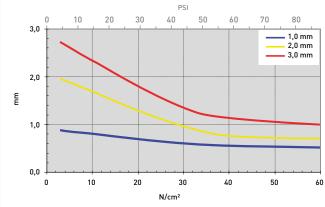
EIGENSCHAFTEN

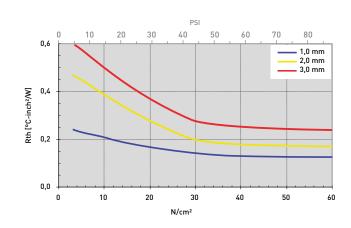
- Silikonfreies Akrylat
- Keine flüchtigen Silioxane
- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 8,0 W/mK
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung

LIEFERFORMEN

- Matte 400 x 200 mm
- Beidseitig haftend (TGF-YXXXX-NS)
- Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik /
- Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-Y1000-NS	TGF-Y2000-NS	TGF-Y3000-NS
MATERIAL		Silikonfreies Akrylat Elastomer mit Keramikfüllung	Silikonfreies Akrylat Elastomer mit Keramikfüllung	Silikonfreies Akrylat Elastomer mit Keramikfüllung
Farbe		Hellgrau	Hellgrau	Hellgrau
Dichte	g/cm³	3,4	3,4	3,4
Dicke	mm	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30
Härte	Shore 00	70	70	70
Entflammbarkeit (Äquivalent)	UL 94	V0	V0	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,13 (0,55)	0,18 (0,75)	0,25 (1,13)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,17 (0,72)	0,28 (1,30)	0,37 (1,80)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,22 (0,83)	0,43 (1,80)	0,55 (2,52)
Thermische Leitfähigkeit ¹	W/mK	8,0	8,0	8,0
Betriebstemperaturbereich	°C	- 40 bis +120	- 40 bis +120	- 40 bis +120
ELEKTRISCH				
Durchschlagsfestigkeit	kV / mm	7,8	7,8	7,8
Durchgangswiderstand	Ohm - cm	1 x 10 ¹¹	1 x 10 ¹¹	1 x 10 ¹¹

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 3,5 mm / 4,0 mm / 4,5 mm / 5,0 mm

SILIKONFREIES GAP-FILLER PAD TGF-GUS-NS

ausscheidungsfrei, extrem elastisches TPE

TGF-GUS-NS ist ein elektrisch isolierender, thermisch leitfähiger, silikonfreier Gap-Filler, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Das TPE Polymer enthält keine flüchtigen Siloxane, die bei Silikonelastomeren freigesetzt werden. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine hohe thermische Leitfähigkeit. Durch seine extreme Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei sehr geringem Druck erreicht. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren.

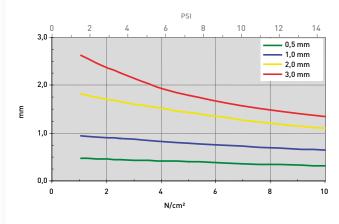
EIGENSCHAFTEN

- ☐ Silikonfreies TPE
- Extrem weich und formanpassungsfähig
- Wärmeleitfähigkeit: 1,5 W/mK
- ☐ Wirkung bei sehr niedrigem Druck
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- Beidseitig selbsthaftend

LIEFERFORMEN

- Matte 300 x 200 mm
- Beidseitig haftend (TGF-GUSXXXX-NS)
- Als lose Formstanzteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik /
- Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-GUS0500-NS	TGF-GUS1000-NS	TGF-GUS2000-NS
MATERIAL		Silikonfreies TPE mit Keramikfüllung	Silikonfreies TPE mit Keramikfüllung	Silikonfreies TPE mit Keramikfüllung
Farbe	••••••	Schwarz	Schwarz	Schwarz
Dicke	mm	0,5 +0,20	1,0 +0,20	2,0 ±0,20
Dichte	g/cm³	1,7	1,7	1,7
Härte	Shore 00	25	25	25
Entflammbarkeit (Äquivalent)	UL 94	VO	VO	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand¹ @ 100 kPa @ Dicke	°C-inch²/W (mm)	0,42 (0,32)	0,74 (0,63)	1,30 (1,11)
Widerstand¹ @ 50 kPa @ Dicke	°C-inch²/W (mm)	0,54 (0,39)	0,98 (0,78)	1,70 (1,44)
Widerstand¹ @ 20 kPa @ Dicke	°C-inch²/W (mm)	0,64 (0,45)	1,19 (0,90)	2,20 (1,72)
Thermische Leitfähigkeit	W/mK	1,5	1,5	1,5
Betriebstemperaturbereich	°C	- 40 bis + 120	- 40 bis + 120	- 40 bis + 120
ELEKTRISCH				
Durchschlagsfestigkeit	kV / mm	> 10	> 10	> 10
Durchgangswiderstand	Ohm - cm	1,0 x 10 ¹⁰	1,0 x 10 ¹⁰	1,0 x 10 ¹⁰

Prüfmethode in Anlehnung an: 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 3,5 mm / 4,0 mm / 4,5 mm / 5,0 mm

SILIKONFREIES GAP-FILLER PAD TGF-IXS-NS

ausscheidungsfrei, extrem weiches Akrylat

TGF-IXS-NS ist ein elektrisch isolierender, thermisch leitfähiger, silikonfreier Gap-Filler, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Das Akrylat Basismaterial enthält keine flüchtigen Siloxane, die bei Silikonelastomeren freigesetzt werden. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine hohe thermische Leitfähigkeit. Durch seine extreme Weichheit und Formanpassungsfähigkeit wird ein optimaler thermischer Kontakt schon bei sehr geringem Druck erreicht. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Durch einen einseitig aufgebrachten transparenten Film ist das Material einseitig nicht haftend.

EIGENSCHAFTEN

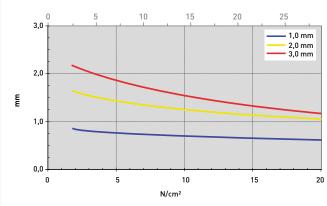
- Mehrlagiges silikonfreies Akrylat:
- Soft-Ultrasoft-Film Keine flüchtigen Siloxane
- Extrem weich und formanpassungsfähig
- Wärmeleitfähigkeit: 2 W/mK
- Wirkung bei sehr niedrigem Druck
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- Einseitig selbsthaftend

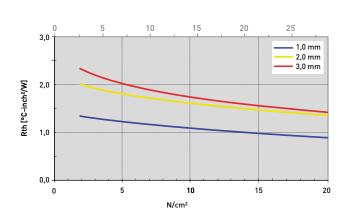
LIEFERFORMEN

- Matte 525 x 210 mm
- Eindseitig haftend durch Filmlaminat (TGF-IXSXXXX-NS-F)
- Als lose Formstanzteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Industriecomputer


EIGENSCHAFT	EINHEIT	TGF-IXS1000-NS-F	TGF-IXS2000-NS-F	TGF-IXS3000-NS-F
MATERIAL		Mehrlagiges silikonfreies Akrylat Elastomer mit Keramikfüllung	Mehrlagiges silikonfreies Akrylat Elastomer mit Keramikfüllung	Mehrlagiges silikonfreies Akrylat Elastomer mit Keramikfüllung
Farbe	•	Dunkelgrün / Weiß	Dunkelgrün / Weiß	Dunkelgrün / Weiß
Dicke	mm	1,0 ±0,1	2,0 ±0,2	3,0 ±0,3
Härte (weiße Schicht)	Shore 00	27	27	27
Entflammbarkeit (Äquivalent)	UL 94	V0	VO	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand¹ @ 100 kPa @ Dicke	°C-inch²/W (mm)	1,07 (0,70)	1,60 (1,25)	1,70 (1,52)
Widerstand¹ @ 50 kPa @ Dicke	°C-inch²/W (mm)	1,22 (0,74)	1,78 (1,40)	2,20 (1,85)
Widerstand¹ @ 20 kPa @ Dicke	°C-inch²/W (mm)	1,32 (0,83)	2,00 (1,60)	2,30 (2,13)
Thermische Leitfähigkeit¹	W/mK	2	2	2
Betriebstemperaturbereich	°C	- 40 bis + 125	- 40 bis + 125	- 40 bis + 125
ELEKTRISCH				
Durchschlagsfestigkeit	kV / mm	2,0	2,0	2,0
Durchgangswiderstand	Ohm - cm	1,0 x 10 ¹¹	1,0 x 10 ¹¹	> 1,0 x 10 ¹¹

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 1,0 mm / 2,0 mm / 3,0 mm / 4,0 mm / 5,0 mm / 6,0 mm

SILIKONFREIES GAP-FILLER PAD TGF-NSS-NS

ausscheidungsfrei, sehr weiches Akrylat

TGF-NSS-NS ist ein elektrisch isolierender, thermisch leitfähiger, silikonfreier Gap-Filler, mit dem sich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Das Akrylat Basismaterial enthält keine flüchtigen Siloxane, die bei Silikonelastomeren freigesetzt werden. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine hohe thermische Leitfähigkeit. Durch seine ausserordentliche Weichheit und Formanpassungsfähigkeit wird ein optimaler termischer Kontakt schon bei sehr geringem Druck erreicht. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Durch seine natürliche Haftfähigkeit lässt sich das Material sehr gut vorapplizieren. Durch einen einseitig aufgebrachten transparenten Film ist das Material optional einseitig nicht haftend ausführbar.

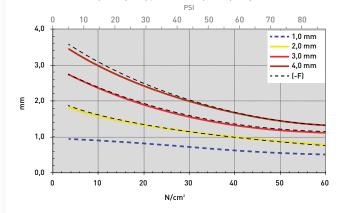
EIGENSCHAFTEN

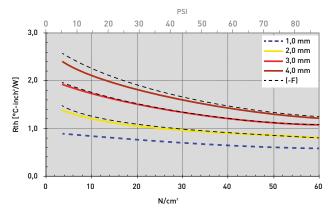
- Silikonfreies Akrylat
- Keine flüchtigen Siloxane
- Außerordentlich weich und formanpassungsfähig
- Wärmeleitfähigkeit: 2,5 W/mK
- Wirkung bei sehr niedrigem Druck
- Vibrationsdämpfend
- Leichte Vormontage durch Selbsthaftung
- ☐ Ein- oder beidseitig selbsthaftend

LIEFERFORMEN

- Matte 510 x 210 mm■ Beidseitig haftend
- (TGF-NSSXXXX-NS) ≥ 2,0 mm
- ☐ Eindseitig haftend durch Filmlaminat
 - (TGF-NSSXXXX-NS-F)
- Als lose FormstanzteileAls Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- SMD Bauteilen
- ☐ Through-hole Vias
- □ RDRAM Speicherbausteine
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen / Notebooks / Medizintechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-NSS1000-NS-F	TGF-NSS2000-NS	TGF-NSS3000-NS	TGF-NSS4000-NS
MATERIAL		Silikonfreies Akrylat Elastomer mit Keramikfüllung	Silikonfreies Akrylat Elastomer mit Keramikfüllung	Silikonfreies Akrylat Elastomer mit Keramikfüllung	Silikonfreies Akrylat Elastomer mit Keramikfüllung
Farbe	••••••	Braun	Braun	Braun	Braun
Dicke	mm	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30	4,0 ±0,40
Dichte	g/cm³	2,33	2,33	2,33	2,33
Härte	Shore 00	47	47	47	47
Entflammbarkeit (Äquivalent)	UL 94	VO	V0	VO	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand¹ @ 400 kPa @ Dicke	°C-inch²/W (mm)	0,60 (0,62)	0,92 (0,99)	1,19 (1,32)	1,41 (1,64)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,67 (0,80)	1,05 (1,33)	1,51 (1,90)	1,81 (2,41)
Widerstand¹ @ 70 kPa @ Dicke	°C-inch²/W (mm)	0,80 (0,91)	1,28 (1,68)	1,79 (2,50)	2,20 (3,20)
Thermische Leitfähigkeit¹	W/mK	2,5	2,5	2,5	2,5
Betriebstemperaturbereich	°C	- 40 bis + 125			
ELEKTRISCH					
Durchschlagsfestigkeit	kV/mm	2,1	1,9	1,9	1,9
Durchgangswiderstand	0hm - cm	1,0 x 10 ¹¹			
Dielektrizitätskonstante	@ 1 MHz	18,2	19,6	19,6	19,6

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 3,5 mm / 4,0 mm mm vs. N/cm² (PSI) / Rth vs. N/cm² (PSI)

SILIKONFREIES GAP-FILLER PAD TGF-XP-NS

ausscheidungsfrei, plastisch

TGF-XP-NS ist ein elektrisch isolierender, thermisch extrem leitfähiger, silikonfreier Gap-Filler, mit dem sich sehr gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Das Butadien Elastomer als Basis enthält keine flüchtigen Siloxane, die bei Silikonelastomeren freigesetzt werden. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine extrem hohe thermische Leitfähigkeit. Durch seine Weichheit und plastische Verformbarkeit passt sich das Material bei geringem Druck an die Oberflächenstruktur an. Der thermische Gesamtübergangswiderstand wird dadurch minimiert.

EIGENSCHAFTEN

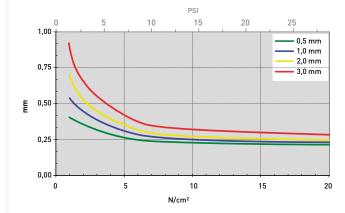
- Silikonfrei
- Keine flüchtigen Silioxane
- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 7 W/mK

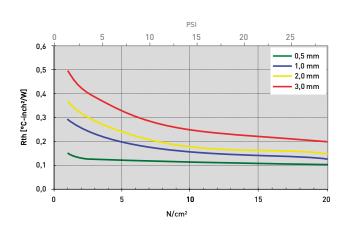
LIEFERFORMEN

- Matte 100 x 100 mm
- ☐ Beidseitig haftend (TGF-XPXXXX-NS)
- Als lose Einzelteile
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik /


Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-XP0500-NS	TGF-XP1000-NS	TGF-XP2000-NS	TGF-XP3000-NS
MATERIAL		Silikonfreies Elastomer mit Keramikfüllung	Silikonfreies Elastomer mit Keramikfüllung	Silikonfreies Elastomer mit Keramikfüllung	Silikonfreies Elastomer mit Keramikfüllung
Farbe		Hellgrau	Hellgrau	Hellgrau	Hellgrau
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30
Dichte	g/cm³	2,0	2,0	2,0	2,0
Härte	Shore 00	70	70	70	70
Entflammbarkeit (Äquivalent)	UL 94	НВ	НВ	НВ	НВ
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,11 (0,21)	0,13 (0,23)	0,15 (0,24)	0,20 (0,28)
Widerstand¹ @ 100 kPa @ Dicke	°C-inch²/W (mm)	0,12 (0,23)	0,16 (0,25)	0,18 (0,27)	0,25 (0,32)
Widerstand¹ @ 50 kPa @ Dicke	°C-inch²/W (mm)	0,13 (0,26)	0,20 (0,31)	0,24 (0,35)	0,33 (0,45)
Thermische Leitfähigkeit ¹	W/mK	7	7	7	7
Betriebstemperaturbereich	°C	- 40 bis + 150			
ELEKTRISCH					
Durchschlagsfestigkeit	kV / mm	4,7	4,7	4,7	4,7
Dielektrizitätskonstante	@ 1 MHz	4,8	4,8	4,8	4,8

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 4,0 mm

SILIKONFREIES GAP-FILLER PAD TGF-ZP-NS

ausscheidungsfrei, plastisch

TGF-ZP-NS ist ein elektrisch isolierender, thermisch extrem leitfähiger, silikonfreier Gap-Filler, mit dem sich außerordentlich gute thermische Anbindungen über große Spaltmaße, z.B. durch Höhenunterschiede elektronischer Bauelemente oder große Toleranzen, erreichen lassen. Das Butadien Elastomer als Basis enthält keine flüchtigen Siloxane, die bei Silikonelastomeren freigesetzt werden. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine extrem hohe thermische Leitfähigkeit. Durch seine Weichheit und plastische Verformbarkeit passt sich das Material bei geringem Druck an die Oberflächenstruktur an. Der thermische Gesamtübergangswiderstand wird dadurch minimiert.

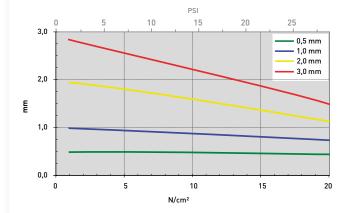
EIGENSCHAFTEN

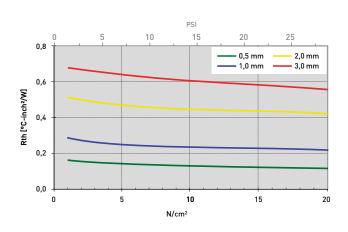
- Silikonfrei
- Keine flüchtigen Silioxane
- Weich und formanpassungsfähig
- Wärmeleitfähigkeit: 10 W/mK

LIEFERFORMEN

- Matte 100 x 100 mm
- ☐ Beidseitig haftend (TGF-ZPXXXX-NS)
- Als lose Einzelteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- SMD Bauteilen
- Through-hole Vias
- RDRAM Speicherbausteine
- Bauelementen an Heat Pipes
- z.B. in Automotiveanwendungen
- / Notebooks / Medizintechnik /
- Industriecomputer

EIGENSCHAFT	EINHEIT	TGF-ZP0500-NS	TGF-ZP1000-NS	TGF-ZP2000-NS	TGF-ZP3000-NS
MATERIAL		Silikonfreies Elastomer mit Keramikfüllung	Silikonfreies Elastomer mit Keramikfüllung	Silikonfreies Elastomer mit Keramikfüllung	Silikonfreies Elastomer mit Keramikfüllung
Farbe		Weiß	Weiß	Weiß	Weiß
Dicke	mm	0,5 ±0,05	1,0 ±0,10	2,0 ±0,20	3,0 ±0,30
Dichte	g/cm³	1,6	1,6	1,6	1,6
Härte	Shore 00	70	70	70	70
Entflammbarkeit (Äquivalent)	UL 94	НВ	НВ	НВ	НВ
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,12 (0,45)	0,22 (0,74)	0,43 (1,13)	0,56 (1,50)
Widerstand¹ @ 100 kPa @ Dicke	°C-inch²/W (mm)	0,13 (0,48)	0,24 (0,89)	0,45 (1,60)	0,61 (2,23)
Widerstand¹ @ 50 kPa @ Dicke	°C-inch²/W (mm)	0,14 (0,49)	0,25 (0,95)	0,48 (1,82)	0,65 (2,56)
Thermische Leitfähigkeit ¹	W/mK	10	10	10	10
Betriebstemperaturbereich	°C	- 40 bis + 150			
ELEKTRISCH					
Durchschlagsfestigkeit	kV / mm	5,6	5,6	5,6	5,6
Dielektrizitätskonstante	@ 1 MHz	3,2	3,2	3,2	3,2

Prüfmethode in Anlehnung an: 1 ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,5 mm / 1,0 mm / 1,5 mm / 2,0 mm / 2,5 mm / 3,0 mm / 4,0 mm

SILIKONFOLIE TFO-D-SI

glasfaserverstärkt, hohe Durchschlagsfestigkeit

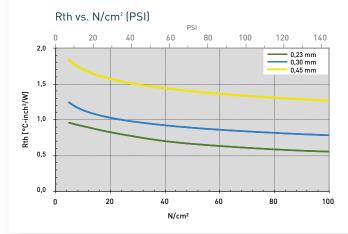
TFO-D-SI ist eine elektrisch isolierende, wärmeleitende Silikonfolie zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine hohe Leitfähigkeit. Unter Druck wird der thermische Gesamtübergangswiderstand minimiert. Dielektrisch weist das Material eine sehr hohe Durchschlagsfestigkeit auf. Die Glasfaserverstärkung sorgt für hohe mechanische Stabilität und eine einfache Handhabung. Als Montagehilfe kann das Material – ohne zusätzliche Kleberschicht – als einseitig selbsthaftende Variante ausgeführt werden.

EIGENSCHAFTEN

- Wärmeleitfähigkeit: 1,2 W/mK
- Sehr guter thermischer Kontakt
- Hohe mechanische Stabilität durch Glasfaserverstärkung
- Sehr hohe dielektrische Durchschlags-
- festigkeit

 Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach Anwendung
- LIEFERFORMEN
- ☐ Matte 300 x 1000 mm
- □ Rolle 300 mm x 50 m
- □ Nicht haftend (TFO-DXXX-SI)
- ☐ Einseitig selbsthaftend ohne zusätzliche Klebeschicht (TFO-DXXX-SI-AO)
- ☐ Einseitig haftend (TFO-DXXX-SI-A1)
- ☐ Als lose Formstanzteile
- ☐ Als Kiss Cut Formteile auf Rolle
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Dioden und Gleichrichter
- elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TFO-D230-SI	TFO-D300-SI	TF0-D450-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Grau	Grau	Grau
Verstärkung		Glasfaser	Glasfaser	Glasfaser
Dicke	mm	0,23 ±0,05	0,3 ±0,05	0,45 ^{±0,05}
Zugfestigkeit ¹	MPa	35	28	20
Entflammbarkeit	UL 94	VO	VO	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand ² @ 1 MPa	°C-inch²/W	0,55	0,75	1,25
Widerstand ² @ 200 kPa	°C-inch²/W	0,79	1,05	1,55
Thermische Leitfähigkeit	W/mK	1,2	1,2	1,2
Betriebstemperaturbereich	°C	- 50 bis + 180	- 50 bis + 180	- 50 bis + 180
ELEKTRISCH				
Durchschlagsspannung ³	kV AC	5,5	> 6,0	> 6,0
Durchgangswiderstand	0hm - cm	> 1,0 x 10 ¹¹	> 1,0 x 10 ¹¹	> 1,0 x 10 ¹¹
Dielektrizitätskonstante	@ 1 MHz	6,0	6,0	6,0

Prüfmethode in Anlehnung an: ASTM D 412, ASTM D 5470, ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

Standarddicken: 0,23 mm / 0,30 mm / 0,45 mm

SILIKONFOLIE TFO-G-SI

glasfaserverstärkt, hohe Durchschlagsfestigkeit

TFO-G-SI ist eine elektrisch isolierende, wärmeleitende Silikonfolie zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine sehr hohe thermische Leitfähigkeit. Unter Druck wird der thermische Gesamtübergangswiderstand minimiert. Dielektrisch weist das Material eine sehr hohe Durchschlagsfestigkeit auf. Die Glasfaserverstärkung sorgt für hohe mechanische Stabilität und eine einfache Handhabung. Für die einfache und sichere Vormontage kann das Material mit einer einseitigen Haftklebebeschichtung ausgeführt werden.

EIGENSCHAFTEN

- Wärmeleitfähigkeit: 1,6 W/mK
- Sehr guter thermischer Kontakt
- Hohe mechanische Stabilität durch Glasfaserverstärkung
- Sehr hohe dielektrische Durchschlags-
- festigkeit

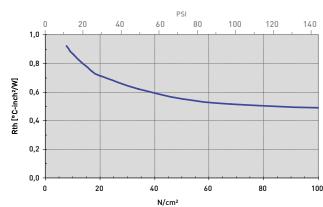
 Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach
- Anwendung

LIEFERFORMEN

- Matte
- □ Rolle 290 mm x 50 m
- Nicht haftend
- (TFO-GXXX-SI)
- Einseitig haftend (TFO-GXXX-SI-A1)
- ☐ Als lose Formstanzteile
- ☐ Als Kiss Cut Formteile auf Bogen oder Rolle

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- MOSFETs und IGBTs
- Dioden und Gleichrichter
- Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Hybride Hochvolt Automotiveanwendungen / Solartechnik

EIGENSCHAFT EINHEIT TF0-G230-SI

MATERIAL		Silikon mit Keramikfüllung
Farbe		Rosa
Verstärkung		Glasfaser
Dicke	mm	0,23 +0,023
Zugfestigkeit¹	MPa	20
Entflammbarkeit	UL 94	VO
RoHS Konformität	2015 / 863 / EU	Ja
THERMISCH		
Widerstand ² @ 1 MPa	°C-inch²/W	0,49
Widerstand² (ปี 200 kPa	°C-inch²/W	0,71
Thermische Leitfähigkeit	W/mK	1,6
Betriebstemperaturbereich	°C	- 50 bis + 180
ELEKTRISCH		
Durchschlagsspannung³	kV AC	5,5
Durchgangswiderstand	0hm - cm	1,0 x 10 ¹¹

Prüfmethode in Anlehnung an: 'ASTM D 412, 'ASTM D 5470, 'ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

Standarddicken: 0,23 mm

SILIKONFOLIE TFO-J-SI

glasfaserverstärkt, hohe Durchschlagsfestigkeit

TFO-J-SI ist eine elektrisch isolierende, wärmeleitende Silikonfolie zur thermischen Anbindung von Silikons mit Keramikfüllstoffen ergibt sich eine hohe thermische Leitfähigkeit. Unter Druck wird der thermische Gesamtübergangswiderstand minimiert. Dielektrisch weist das Material eine sehr hohe Durchschlagsfestigkeit auf. Die Glasfaserverstärkung sorgt für hohe mechanische Stabilität und eine einfache Handhabung. Für die einfache und sichere Vormontage kann das Material mit einer einseitigen Haftklebebeschichtung ausgeführt werden.

EIGENSCHAFTEN

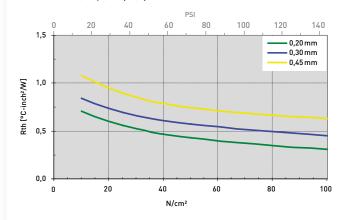
- Wärmeleitfähigkeit: 2,0 W/mK
- Sehr guter thermischer Kontakt
- Hohe mechanische Stabilität durch Glasfaserverstärkung
- Sehr hohe dielektrische Durchschlagsfestigkeit
- ☐ Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach Anwendung

LIEFERFORMEN

- Matte
- □ Rolle 300 mm x 50 m (0,20 / 0,30 mm)
- □ Rolle 300 mm x 25 m (0,45 mm)
- Nicht haftend (TFO-JXXX-SI)
- Einseitig haftend (TF0-JXXX-SI-A1)
- Als lose Formstanzteile
- ☐ Als Kiss Cut Formteile auf Rolle☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- MOSFETs und IGBTs
- Dioden und Gleichrichter
- Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Hybride

Hochvolt Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TF0-J200-SI	TFO-J300-SI	TF0-J450-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe	•••••	Dunkelbraun	Dunkelbraun	Dunkelbraun
Verstärkung		Glasfaser	Glasfaser	Glasfaser
Dicke	mm	0,20 ±0,05	0,30 ±0,05	0,45 ^{±0,05}
Zugfestigkeit ¹	MPa	40	27	20
Entflammbarkeit	UL 94	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand ² @ 1 MPa	°C-inch²/W	0,31	0,45	0,63
Widerstand ² @ 200 kPa	°C-inch²/W	0,61	0,74	0,96
Thermische Leitfähigkeit	W/mK	2,0	2,0	2,0
Betriebstemperaturbereich	°C	- 40 bis + 180	- 40 bis + 180	- 40 bis + 180
ELEKTRISCH				
Durchschlagsspannung ³	kV AC	5,0	7,0	10,0
Durchgangswiderstand	Ohm - cm	4,2 x 10 ¹⁴	3,5 x 10 ¹⁴	3,8 x 10 ¹⁴
Dielektrizitätskonstante	@ 1 MHz	3,8	4,2	4,3

Prüfmethode in Anlehnung an: 'ASTM D 412, 'ASTM D 5470, 'ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

Standarddicken: 0,20 mm / 0,30 mm / 0,45 mm / 0,80 mm

SILIKONFOLIE TFO-K-SI

glasfaserverstärkt

TFO-K-SI ist eine elektrisch isolierende, wärmeleitende Silikonfolie zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine sehr gute Leitfähigkeit. Unter Druck wird der thermische Gesamtübergangswiderstand minimiert. Die Glasfaserverstärkung sorgt für hohe mechanische Stabilität und eine einfache Handhabung. Für die einfache und sichere Vormontage kann das Material mit einer einseitigen Haftklebebeschichtung ausgeführt werden.

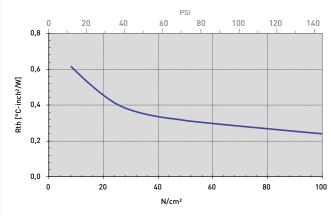
EIGENSCHAFTEN

- Wärmeleitfähigkeit: 2,5 W/mK
- Sehr guter thermischer Kontakt
- ☐ Hohe mechanische Stabilität durch
 - Glasfaserverstärkung
- Extrem alterungs-/chemisch beständig
- ☐ Rückstandslose Entfernung nach Anwendung

LIEFERFORMEN

- Matte 320 x 1000 mm
- □ Rolle 320 mm x 50 m
- Nicht haftend (TF0-K200-SI)
- ☐ Einseitig haftend (TFO-K200-SI-A1)
- Als lose Formstanzteile
- Als Kiss Cut Formteile auf Rolle
- ☐ Als Kiss Cut Formteile auf Bogen

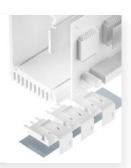
ANWENDUNGSBEISPIELE


 $Thermische \ Anbindung \ von \ z.B.$

- MOSFETs und IGBTs
- Dioden und Gleichrichter
- elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TF0-K200-SI
MATERIAL		Silikon mit Keramikfüllung
Farbe		Grau
Verstärkung		Glasfaser
Dicke	mm	0,23 ±0,05
Zugfestigkeit ¹	MPa	20
Entflammbarkeit	UL 94	V 0
RoHS Konformität	2015 / 863 / EU	Ja
THERMISCH		
Widerstand ² @ 1 MPa	°C-inch²/W	0,24
Widerstand ² @ 200 kPa	°C-inch²/W	0,47
Thermische Leitfähigkeit	W/mK	2,5
Betriebstemperaturbereich	°C	- 50 bis + 200
ELEKTRISCH		
Durchschlagsspannung³	kV AC	2,0
Durchgangswiderstand	0hm - cm	2,0 x 10 ¹⁴
Dielektrizitätskonstante	@ 1 MHz	4,0

Prüfmethode in Anlehnung an: 'ASTM D 412, 'ASTM D 5470, 'ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.


Standarddicke: 0,23 mm

SILIKONFOLIE TFO-0-SI

glasfaserverstärkt, hohe Durchschlagsfestigkeit

TFO-0-SI ist eine elektrisch isolierende, wärmeleitende Silikonfolie zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine hohe thermische Leitfähigkeit. Unter Druck wird der thermische Gesamtübergangswiderstand minimiert. Dielektrisch weist das Material eine sehr hohe Durchschlagsfestigkeit auf. Die Glasfaserverstärkung sorgt für hohe mechanische Stabilität und eine einfache Handhabung. Für die einfache und sichere Vormontage kann das Material mit einer einseitigen Haftklebebeschichtung ausgeführt werden.

EIGENSCHAFTEN

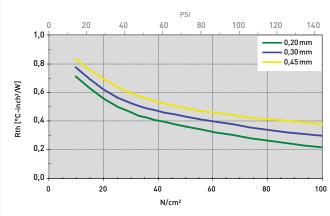
- Wärmeleitfähigkeit: 3,0 W/mK
- Sehr guter thermischer Kontakt
- Hohe mechanische Stabilität durch Glasfaserverstärkung
- ☐ Sehr hohe dielektrische Durchschlags-
- festigkeit
- □ Extrem alterungs-/chemisch beständig□ Rückstandslose Entfernung nach
- Anwendung

LIEFERFORMEN

- Matte
- □ Rolle 300 mm x 50 m (0,20 / 0,30 mm)
- □ Rolle 300 mm x 25 m (0,45 mm)
- Nicht haftend (TF0-0XXX-SI)
- ☐ Einseitig haftend (TFO-0XXX-SI-A1)
- Als lose Formstanzteile
- Als Kiss Cut Formteile auf Rolle
- Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- MOSFETs und IGBTs
- Dioden und Gleichrichter
- ☐ Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Hybride

Hochvolt Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TF0-0200-SI	TF0-0300-SI	TF0-0450-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Grau	Grau	Grau
Verstärkung		Glasfaser	Glasfaser	Glasfaser
Dicke	mm	0,20 ±0,05	0,30 ±0,05	0,45 ^{±0,05}
Zugfestigkeit ¹	MPa	23	16	11
Entflammbarkeit	UL 94	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand ² @ 1 MPa	°C-inch²/W	0,22	0,30	0,38
Widerstand ² @ 200 kPa	°C-inch²/W	0,55	0,60	0,70
Thermische Leitfähigkeit	W/mK	3,0	3,0	3,0
Betriebstemperaturbereich	°C	- 40 bis + 180	- 40 bis + 180	- 40 bis + 180
ELEKTRISCH				
Durchschlagsspannung ³	kV AC	5,0	7,0	8,0
Durchgangswiderstand	0hm - cm	9,2 x 10 ¹³	8,8 x 10 ¹³	3,4 x 10 ¹²
Dielektrizitätskonstante	@ 1 MHz	4,8	5,6	6,2

Prüfmethode in Anlehnung an: 'ASTM D 412, 'ASTM D 5470, 'ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50 % rel. Feuchte.

Standarddicken: 0,20 mm / 0,30 mm / 0,45 mm

SILIKONFOLIE TFO-T-SI

glasfaserverstärkt

TFO-T-SI ist eine elektrisch isolierende, wärmeleitende Silikonfolie zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine sehr hohe Leitfähigkeit. Durch die besondere Oberflächenstruktur passt sich das Material sehr gut an. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Die Glasfaserverstärkung sorgt für hohe mechanische Stabilität und eine einfache Handhabung. Für die einfache und sichere Vormontage kann das Material mit einer einseitigen Haftklebe-beschichtung ausgeführt werden.

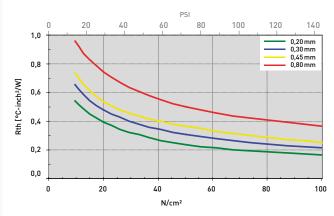
EIGENSCHAFTEN

- Wärmeleitfähigkeit: 4,1 W/mK
- □ Sehr gute Oberflächenanpassung
- ☐ Sehr guter thermischer Kontakt
- Hohe mechanische Stabilität durch Glasfaserverstärkung
- Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach Anwendung

LIEFERFORMEN

- Matte 440 x 510 mm
- Nicht haftend (TF0-TXXX-SI)
- ☐ Einseitig haftend (TF0-TXXX-SI-A1)
- Als lose Formstanzteile
- ☐ Als Kiss Cut Formteile auf Bogen

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Dioden und Gleichrichter
- Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen

EIGENSCHAFT	EINHEIT	TF0-T200-SI	TF0-T300-SI	TF0-T450-SI	TF0-T800-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Hellgrün	Weiss	Weiss	Weiss
Verstärkung		Glasfaser	Glasfaser	Glasfaser	Glasfaser
Dicke	mm	0,20 ±0,05	0,30 ±0,05	0,45 ±0,05	0,80 +0,20 -0,05
Zugfestigkeit ¹	MPa	25	20	14	9
Entflammbarkeit	UL 94	VO	VO	VO	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand ² @ 1 MPa	°C-inch²/W	0,16	0,21	0,24	0,36
Widerstand ² @ 200 kPa	°C-inch²/W	0,39	0,47	0,53	0,74
Thermische Leitfähigkeit²	W/mK	4,1	4,1	4,1	4,1
Betriebstemperaturbereich	°C	- 50 bis + 200	- 50 bis + 200	- 50 bis + 200	•••••
ELEKTRISCH					
Durchschlagsspannung ³	kV AC	3,0	6,5	9,0	> 10
Durchgangswiderstand	0hm - cm	1,9 x 10 ¹⁵	2,4 x 10 ¹⁵	3,3 x 10 ¹⁵	4,1 x 10 ¹⁵
Dielektrizitätskonstante	@ 1 MHz	3,6	3,6	3,6	3,6

Prüfmethode in Anlehnung an: 'ASTM D 412, 'ASTM D 5470, 'ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

Standarddicken: 0,20 mm / 0,30 mm / 0,45 mm / 0,80 mm

SILIKONFOLIE TFO-X-SI

glasfaserverstärkt

TFO-X-SI ist eine elektrisch isolierende, wärmeleitende Silikonfolie zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine exzellente Leitfähigkeit. Durch die besondere Oberflächenstruktur passt sich das Material sehr gut an. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Die Glasfaserverstärkung sorgt für hohe mechanische Stabilität und eine einfache Handhabung. Für die einfache und sichere Vormontage kann das Material mit einer einseitigen Haftklebebeschichtung ausgeführt werden.

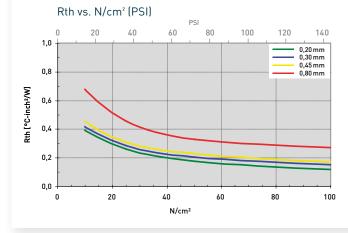
EIGENSCHAFTEN

- Wärmeleitfähigkeit: 5,0 W/mK
- Sehr gute Oberflächenanpassung
- Sehr guter thermischer Kontakt
- Hohe mechanische Stabilität durch Glasfaserverstärkung
- Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach Anwendung

LIEFERFORMEN

- Matte 440 x 510 mm
- Nicht haftend (TFO-XXXX-SI)
- ☐ Einseitig haftend (TF0-XXXX-SI-A1)
- ☐ Als lose Formstanzteile
- ☐ Als Kiss Cut Formteile auf Bogen / Motorsteuerungen / Solartechnik

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Dioden und Gleichrichter
- Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen

EIGENSCHAFT	EINHEIT	TF0-X200-SI	TFO-X300-SI	TFO-X450-SI	TFO-X800-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Weiss	Weiss	Weiss	Weiss
Verstärkung		Glasfaser	Glasfaser	Glasfaser	Glasfaser
Dicke	mm	0,20 ±0,05	0,30 ±0,05	0,45 ±0,05	0,80 +0,20
Zugfestigkeit ¹	MPa	9	8	5	4
Entflammbarkeit	UL 94	VO	VO	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand ² @ 1 MPa	°C-inch²/W	0,11	0,15	0,17	0,27
Widerstand ² @ 200 kPa	°C-inch²/W	0,29	0,32	0,35	0,52
Thermische Leitfähigkeit²	W/mK	5,0	5,0	5,0	5,0
Betriebstemperaturbereich	°C	- 50 bis + 200	- 50 bis + 200	- 50 bis + 200	••••
ELEKTRISCH					
Durchschlagsspannung³	kV AC	3,0	6,0	9,0	> 10
Durchgangswiderstand	Ohm - cm	1,7 x 10 ¹⁵	7,9 x 10 ¹⁵	9,2 x 10 ¹⁵	8,9 x 10 ¹⁵
Dielektrizitätskonstante	@ 1 MHz	3,3	3,3	3,3	3,3

Prüfmethode in Anlehnung an: 'ASTM D 412, 'ASTM D 5470, 'ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

Standarddicken: 0,08 mm / 0,20 mm / 0,30 mm / 0,45 mm / 0,80 mm

SILIKONFOLIE TFO-ZS-SI

glasfaserverstärkt

TFO-ZS-SI ist eine elektrisch isolierende, wärmeleitende Silikonfolie zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine extrem hohe Leitfähigkeit. Durch die besondere Oberflächenstruktur und Flexibilität passt sich das Material sehr gut an. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Die Glasfaserverstärkung sorgt für hohe mechanische Stabilität und eine einfache Handhabung.

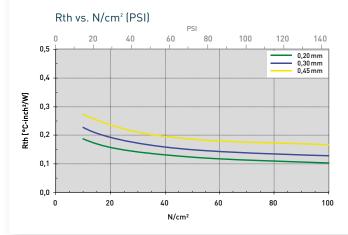
EIGENSCHAFTEN

- Wärmeleitfähigkeit: 8,0 W/mK
- Sehr gute Oberflächenanpassung und Flexibilität
- ☐ Sehr guter thermischer Kontakt
- ☐ Hohe mechanische Stabilität durch Glasfaserverstärkung
- Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach Anwendung

LIEFERFORMEN

- Matte 440 x 510 mm
- ☐ Nicht haftend (TFO-ZSXXXX-SI)
- Als lose Formstanzteile

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Dioden und Gleichrichter
- ☐ Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Solartechnik

EIGENSCHAFT	EINHEIT	TFO-ZS0200-SI	TFO-ZS0300-SI	TF0-ZS0450-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Weiß	Weiß	Weiß
Verstärkung		Glasfaser	Glasfaser	Glasfaser
Dicke	mm	0,20 ±0,05	0,30 ±0,05	0,45 ^{±0,05}
Zugfestigkeit¹	MPa	9,1	6,6	4,6
Entflammbarkeit (Äquivalent)	UL 94	VO	VO	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand ² @ 1 MPa	°C-inch²/W	0,10	0,13	0,17
Widerstand ² @ 200 kPa	°C-inch²/W	0,15	0,19	0,24
Thermische Leitfähigkeit²	W/mK	8	8	8
Betriebstemperaturbereich	°C	- 40 bis + 180	- 40 bis + 180	- 40 bis + 180
ELEKTRISCH				
Durchschlagsspannung ³	kV AC	3,6	4,5	5,0

Prüfmethode in Anlehnung an: ¹ ASTM D 412, ² ASTM D 5470, ³ ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,20 mm / 0,30 mm / 0,45 mm

SILIKONFOLIE TFO-L-SI

unverstärkt

TFO-L-SI ist eine elektrisch isolierende, wärmeleitende Silikonfolie zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine hohe Leitfähigkeit. Durch die besondere Oberflächenstruktur passt sich das Material sehr gut an die Kontaktoberflächen bei geringem Druck an. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Das Material eignet sich für ein weites Anwendungsgebiet.

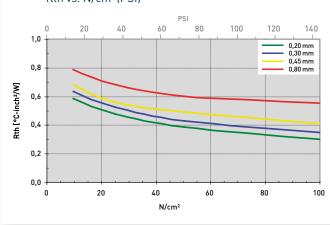
EIGENSCHAFTEN

- ☐ Wärmeleitfähigkeit: 2,1 W/mK
- □ Sehr gute Anpassungsfähigkeit bei geringem Druck
- Sehr niedriger thermischer Übergangswiderstand
- Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach Anwendung

LIEFERFORMEN

- Matte 440 x 480 mm
- Nicht haftend (TFO-LXXX-SI)
- Als lose Formstanzteile

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Dioden und Gleichrichter
- Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Automotiveanwendungen

EIGENSCHAFT	EINHEIT	TF0-L200-SI	TF0-L300-SI	TF0-L450-SI	TFO-L800-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Grau	Grau	Grau	Grau
Verstärkung		Keine	Keine	Keine	Keine
Dicke	mm	0,20 ±0,05	0,30 ±0,05	0,45 ±0,05	0,80 ±0,05
Zugfestigkeit ¹	MPa	3	3	3	3
Entflammbarkeit	UL 94	V0	VO	VO	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	Ja
THERMISCH					
Widerstand ² @ 1 MPa	°C-inch²/W	0,30	0,35	0,41	0,55
Widerstand ² @ 200 kPa	°C-inch²/W	0,50	0,56	0,59	0,71
Thermische Leitfähigkeit²	W/mK	2,1	2,1	2,1	2,1
Betriebstemperaturbereich	°C	- 50 bis + 200			
ELEKTRISCH					
Durchschlagsspannung³	kV AC	3	5	8	9
Durchgangswiderstand	Ohm - cm	1,5 x 10 ¹³	6,0 x 10 ¹³	5,4 x 10 ¹³	7,7 x 10 ¹³
Dielektrizitätskonstante	@ 1 MHz	5,5	5,5	5,5	5,5

Prüfmethode in Anlehnung an: 'ASTM D 412, 'ASTM D 5470, 'ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 0,20 mm / 0,30 mm / 0,45 mm / 0,80 mm

ISOLATIONSFILM TFO-M-SI-PI

silikonbeschichtet, hohe Durchschlagsfestigkeit

TFO-M-SI-PI ist eine thermisch leitfähige Folie aus einem elektrisch isolierenden Polyimid Trägerfilm mit wärmeleitenden Silikonbeschichtungen auf beiden Seiten zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine hohe Leitfähigkeit. Unter Druck stellt sich ein sehr geringer thermischer Gesamtwiderstand ein. Dadurch wird der thermische Gesamtübergangswiderstand minimiert. Dielektrisch weist das Material eine sehr hohe Durchschlagsfestigkeit auf. Der Trägerfilm sorgt für höchste mechanische Stabilität und eine einfache Handhabung.

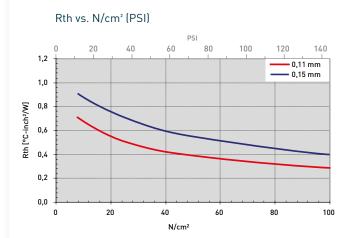
EIGENSCHAFTEN

- Sehr guter thermischer Kontakt
- ☐ Sehr hohe dielektrische Durchschlagsfestigkeit
- ☐ Hohe mechanische Stabilität durch Trägerfilm
- Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach Anwendung

LIEFERFORMEN

- Matte 320 x 400 mmAndere auf Anfrage■ Rolle 320 mm x 50 m
- Nicht haftend (TFO-MXXX-SI-PI)
- ☐ Als lose Formstanzteile

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Dioden und Gleichrichter
- Elektronische Module
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TF0-M110-SI-PI	TF0-M150-SI-PI
MATERIAL		Mit Keramik gefüllter silikon- beschichteter Isolationsfilm	Mit Keramik gefüllter silikon- beschichteter Isolationsfilm
Farbe		Hellbraun	Hellbraun
Verstärkung		Polyimid Isolationsfilm	Polyimid Isolationsfilm
Dicke	mm	0,11 ±0,02	0,15 ^{±0,02}
Entflammbarkeit	UL 94	V0	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja
THERMISCH			
Widerstand¹ @ 1 MPa	°C-inch²/W	0,29	0,40
Widerstand¹ @ 200 kPa	°C-inch²/W	0,55	0,75
Betriebstemperaturbereich	°C	- 40 bis + 180	- 40 bis + 180
ELEKTRISCH			
Durchschlagsspannung²	kV AC	6	> 6

Prüfmethode in Anlehnung an: 'ASTM D 5470, 'ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicke: 0.11 / 0.15 mm

SILIKONKAPPE TCP-C-SI

rundum Isolation

TCP-C-SI ist eine thermisch leitfähige Silikonkappe zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen für eine gleichzeitig sichere elektrische Rundumisolierung. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine gute Leitfähigkeit. Durch die besondere Oberflächenstruktur passt sich das Material sehr gut an die Kontaktoberflächen an. Dadurch wird der thermische Gesamtübergangswiderstand minimiert.

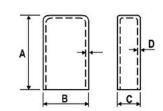
EIGENSCHAFTEN

- ☐ Sehr gute Oberflächenanpassung
- ☐ Sehr guter thermischer Kontakt
- Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach Anwendung

LIEFERFORMEN

- Wandstärke 0,5 mm / 0,8 mm
- Unterschiedliche Größen (siehe Tabelle Größen)

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Dioden und Gleichrichter
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TCP-C250-SI	TCP-C280-SI	
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	
Farbe		Grau	Grau	
Dicke	mm	0,50	0,80	
Zugfestigkeit¹	MPa	3,3	3,3	
Reißfestigkeit	kN/m	6,0	6,0	
Entflammbarkeit	UL 94	V0	VO	
RoHS Konformität	2015 / 863 / EU	Ja	Ja	
THERMISCH				
Widerstand @ 200 kPa	°C-inch²/W	0,48	0,58	
Thermische Leitfähigkeit	W/mK	0,8	0,8	
Betriebstemperaturbereich	°C	- 40 bis + 155	- 40 bis + 155	
ELEKTRISCH				
Durchschlagsspannung²	kV AC	4	10	
Durchgangswiderstand	0hm - cm	2,6 x 10 ¹⁵	2,6 x 10 ¹⁵	
Dielektrizitätskonstante	@ 1 MHz	4.85	4.85	

Prüfmethode in Anlehnung an: 'ASTM D 412, 'ASTM D 149, Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

GRÖSSEN IN MM	Α	В	С	D	
TCP-C150-SI	16,0 ±0,1	11,5 ±0,1	5,9 ±0,1	0,5 ±0,1	
TCP-C250-SI	21,5 ±0,1	11,5 ±0,1	5,9 ±0,1	0,5 ±0,1	
TCP-C280-SI	21,8 ±0,1	12,1 ±0,1	6,5 ±0,1	0,8 ±0,1	
TCP-C450-SI	28,5 ±0,1	17,5 ±0,1	5,9 ±0,1	0,5 ±0,1	
TCP-C480-SI	28,8 ± 0,1	18,2 ±0,1	6,6 ±0,1	0,8 ±0,1	

SILIKONKAPPE TCP-J-SI

rundum Isolation

TCP-J-SI ist eine thermisch leitfähige Silikonkappe zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen für eine gleichzeitig sichere elektrische Rundumisolierung. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine hohe Leitfähigkeit. Durch die besondere Oberflächenstruktur passt sich das Material sehr gut an die Kontaktoberflächen an. Dadurch wird der thermische Gesamtübergangswiderstand minimiert.

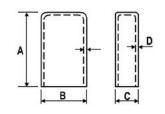
EIGENSCHAFTEN

- ☐ Sehr gute Oberflächenanpassung
- ☐ Sehr guter thermischer Kontakt
- Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach Anwendung

LIEFERFORMEN

- Wandstärken 0,30 mm / 0,45 mm / 0,80 mm
- ☐ Unterschiedliche Größen (siehe Tabelle Größen)

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Dioden und Gleichrichter
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TCP-J300-SI	TCP-J450-SI	TCP-J800-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Rosa	Rosa	Rosa
Dicke	mm	0,30	0,45	0,80
Zugfestigkeit	MPa	3,2	3,2	3,2
Reißfestigkeit	kN/m	9,8	9,8	9,8
Entflammbarkeit	UL 94	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand (@ TO-3P)	°C/W	0,68	0,95	1,60
Thermische Leitfähigkeit¹	W/mK	1,5	1,5	1,5
Betriebstemperaturbereich	°C	- 50 bis + 200	- 50 bis + 200	- 50 bis + 200
ELEKTRISCH				
Durchschlagsspannung	kV AC	10	13	18
Durchgangswiderstand	Ohm - cm	3,2 x 10 ¹⁴	3,2 x 10 ¹⁴	3,2 x 10 ¹⁴
Dielektrizitätskonstante	@ 1 MHz	6,0	6,0	6,0

Prüfmethode in Anlehnung an: 'ASTM E 1530. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

GRÖSSEN IN MM	Α	В	С	D
TCP-J300-SI (für T0-220)	21,5 ± 1,0	11,4 ±0,5	5,8 ±0,3	0,30 + 0,15 / -0,00
TCP-J300-SI (für TO-3P)	28,5 ± 1,0	17,5 ±0,5	5,8 ±0,3	0,30 +0,15 /-0,00
TCP-J450-SI (für TO-220)	21,5 ± 1,0	11,4 ±0,5	5,8 ±0,3	0,45 +0,10 /-0,05
TCP-J450-SI (für TO-3P)	28,5 ± 1,0	17,5 ±0,5	5,9 ±0,3	0,45 +0,10 /-0,05
TCP-J800-SI (für T0-220)	21,8 ± 1,0	12,1 ±0,5	6,5 ±0,3	0,80 +0,15 /-0,00
TCP-J800-SI (for TO-3P)	28,8 ± 1,0	18,2 ±0,5	6,6 ±0,3	0,80 +0,15 /-0,00

SILIKONKAPPE TCP-L-SI

rundum Isolation

TCP-L-SI ist eine thermisch leitfähige Silikonkappe zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen für eine gleichzeitig sichere elektrische Rundumisolierung. Durch die spezielle Formulierung und Füllung des Silikons mit Keramikfüllstoffen ergibt sich eine sehr hohe Leitfähigkeit. Durch die besondere Oberflächenstruktur passt sich das Material sehr gut an die Kontaktoberflächen an. Dadurch wird der thermische Gesamtübergangswiderstand minimiert.

EIGENSCHAFTEN

- Wärmeleitfähigkeit: 2,0 W/mK
- Sehr gute Oberflächenanpassung
- ☐ Sehr guter thermischer Kontakt
- Extrem alterungs-/chemisch beständig
- Rückstandslose Entfernung nach Anwendung

LIEFERFORMEN

- Wandstärken 0,30 mm / 0,45 mm / 0,80 mm
- Unterschiedliche Größen (siehe Tabelle Größen)

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Dioden und Gleichrichter
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TCP-L300-SI	TCP-L450-SI	TCP-L800-SI
MATERIAL		Silikon mit Keramikfüllung	Silikon mit Keramikfüllung	Silikon mit Keramikfüllung
Farbe		Braun	Braun	Braun
Dicke	mm	0,30	0,45	0,80
Zugfestigkeit	MPa	3,0	3,0	3,0
Reißfestigkeit	kN/m	6,0	6,0	6,0
Entflammbarkeit	UL 94	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand (@ TO-3P)	°C/W	0,4	0,6	1,1
Thermische Leitfähigkeit¹	W/mK	2,0	2,0	2,0
Betriebstemperaturbereich	°C	- 50 bis + 200	- 50 bis + 200	- 50 bis + 200
ELEKTRISCH				
Durchschlagsspannung	kV AC	5	7	12
Durchgangswiderstand	0hm - cm	3,5 x 10 ¹⁴	3,5 x 10 ¹⁴	3,5 x 10 ¹⁴
Dielektrizitätskonstante	@ 1 MHz	6,2	6,2	6,2

Prüfmethode in Anlehnung an: 'ASTM E 1530. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

GRÖSSEN IN MM	A	В	С	D
TCP-L300-SI (für T0-220)	21,5 ± 1,0	11,4 ± 0,5	5,8 ±0,3	0,30 +0,15 /-0,00
TCP-L300-SI (für TO-3P)	28,5 ±1,0	17,5 ±0,5	5,8 ±0,3	0,30 +0,15 /-0,00
TCP-L450-SI (für T0-220)	21,5 ±1,0	11,4 ±0,5	5,8 ±0,3	0,45 +0,10 /-0,05
TCP-L450-SI (für TO-3P)	28,5 ±1,0	17,5 ±0,5	5,9 ±0,3	0,45 +0,10 /-0,05
TCP-L800-SI (für TO-220)	21,8 ±1,0	12,1 ±0,5	6,5 ±0,3	0,80 +0,15 /-0,00
TCP-L800-SI (for TO-3P)	28,8 ±1,0	18,2 ±0,5	6,6 ±0,3	0,80 +0,15 /-0,00

POLYIMID FILM / PHASE CHANGE TPC-N-PI

Phase-Change beschichtet

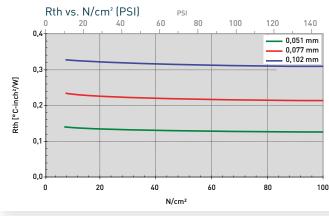
TPC-N-PI ist ein thermisch leitfähiger Film aus einem elektrisch isolierenden Devinall TH Polyimid Träger mit beidseitiger Phase-Change Beschichtung zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Die Phase-Change Beschichtungen benetzen beim Weichwerden oberhalb der Phase-Change Temperatur und unter geringem Druck die unvermeidbaren Oberflächenrauhigkeiten sowie Unebenheiten und treiben die Lufteinschlüsse aus den Mikrostrukturen der Oberfläche aus. Dadurch, dass sich das Phase-Change Material bei steigender Temperatur volumetrisch um ca. 10–15% ausdehnt, wird die Benetzung der Kontaktflächen zusätzlich verbessert. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Dielektrisch weist das Material eine hohe Durchschlagsfestigkeit auf.

EIGENSCHAFTEN

- Optimaler thermischer Kontakt
- Hohe dielektrische Durchschlagsfestigkeit
- Silikonfrei
- Keine Austrocknung, Migration, Auspumpen
- Kein Auslaufen durch thixotropische Eigenschaft
- □ Prozesssicher gleichmäßige Dicke
- Idealer Ersatz für Wärmeleitpaste

LIEFERFORMEN

- Matte 305 x 495 / 610 x 495 mm
- □ Rolle 495 mm x 152 m
- Nicht klebend (TPC-NXXX-PI)
- □ Einseitig klebend mit PSA (TPC-NXXX-PI-A1)
- ☐ Mit Klebelinien auf Anfrage
- □ Dickere Beschichtung (25 µm)□ Als lose Formstanzteile
- Als Kiss Cut Formteile


ANWENDUNGSBEISPIELE

- Thermische Anbindung von z.B.
- MOSFETs und IGBTs
- Dioden und Gleichrichtern
- Leistungshalbleitern
- Unisolierten Leistungsmodulen
- z.B. in Motorsteuerungen in der Automotive Industrie / Stromversorgungen und Wechselrichtern / Traktionsantrieben / Telekomanwendungen

EIGENSCHAFT	EINHEIT	TPC-N051-PI	TPC-N077-PI	TPC-N102-PI
MATERIAL		Devinall TH Polyimidfilm mit Phase-Change Beschichtung	Devinall TH Polyimidfilm mit Phase-Change Beschichtung	Devinall TH Polyimidfilm mit Phase-Change Beschichtung
Farbe		Hellorange	Hellorange	Hellorange
Dicke Devinall TH	μm	25 ±4	51 ±8	77 ±12
Dicke Wachsbeschichtung (je Seite)	μm	13	13	13
Gesamtdicke	μm	51	77	102
Zugfestigkeit	MPa	136	136	136
Entflammbarkeit Devinall TH (Äquivalent)	UL 94	V0	VO	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand¹ @ 1 MPa	°C-inch²/W	0,126	0,215	0,311
Widerstand¹ @ 200 kPa	°C-inch²/W	0,130	0,220	0,315
Widerstand¹ @ 70 kPa	°C-inch²/W	0,143	0,237	0,332
Thermische Leitfähigkeit Devinall TH	W/mK	0,36	0,36	0,36
Phase-Change Temperatur	°C	ca. 60	ca. 60	ca. 60
ELEKTRISCH				
Durchschlagsspannung	kV AC	5,4	9,0	13,5
Durchgangswiderstand	0hm - cm	1,0 x 10 ¹⁶	1,0 x 10 ¹⁶	1,0 x 10 ¹⁶
Dielektrizitätskonstante	@ 25 °C	4,0	4,0	4,0

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

Standarddicken: Devinall TH Polyimid: 25 µm / 51 µm / 76 µm. Gesamtdicken: 51 µm / 77µm / 102 µm

POLYIMID FILM / PHASE CHANGE TPC-P-KA

Phase-Change beschichtet

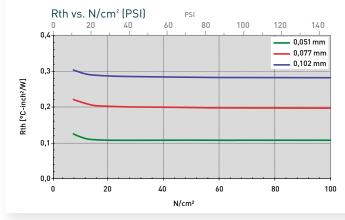
TPC-P-KA ist ein thermisch leitfähiger Film aus einem elektrisch isolierenden Kapton® MT Träger mit beidseitiger Phase-Change Beschichtung zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Die Phase-Change Beschichtungen benetzen beim Weichwerden oberhalb der Phase-Change Temperatur und unter geringem Druck die unvermeidbaren Oberflächenrauhigkeiten sowie Unebenheiten und treiben die Lufteinschlüsse aus den Mikrostrukturen der Oberfläche aus. Dadurch, dass sich das Phase-Change Material bei steigender Temperatur volumetrisch um ca. 10 –15% ausdehnt, wird die Benetzung der Kontaktflächen zusätzlich verbessert. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Dielektrisch weist das Material eine hohe Durchschlagsfestigkeit auf.

EIGENSCHAFTEN

- Optimaler thermischer Kontakt
- Hohe dielektrische Durchschlagsfestigkeit
- Silikonfrei
- Keine Austrocknung, Migration, AuspumpenKein Auslaufen durch thixotropische
- Kein Auslaufen durch thixotropische Eigenschaft
- □ Prozesssicher gleichmäßige Dicke
- Idealer Ersatz für Wärmeleitpaste

LIEFERFORMEN

- Matte 305 x 394 / 610 x 394 mm
- Rolle 394 mm x 152 m
- □ Nicht klebend (TPC-PXXX-KA)
- ☐ Einseitig klebend mit PSA (TPC-PXXX-KA-A1)
- Mit Klebelinien auf Anfrage
- □ Dickere Beschichtung (25 µm)
- Als lose Formstanzteile
- Als Kiss Cut Formteile


ANWENDUNGSBEISPIELE

- Thermische Anbindung von z.B.
- MOSFETs und IGBTs
- Dioden und Gleichrichtern
- Leistungshalbleitern
- Unisolierten Leistungsmodulen
- z.B. in Motorsteuerungen in der Automotive Industrie / Stromversorgungen und Wechselrichtern / Traktionsantrieben / Telekomanwendungen

EIGENSCHAFT	EINHEIT	TPC-P051-KA	TPC-P077-KA	TPC-P102-KA
MATERIAL		Kapton® MT mit Phase- Change Beschichtung	Kapton® MT mit Phase- Change Beschichtung	Kapton® MT mit Phase- Change Beschichtung
Farbe		Hellorange	Hellorange	Hellorange
Dicke Kapton® MT	μm	25 ±4	51 ±8	77 ±12
Dicke Wachsbeschichtung (je Seite)	μm	13	13	13
Gesamtdicke	μm	51	77	102
Zugfestigkeit¹	MPa	138	152	159
Entflammbarkeit Kapton® MT	UL 94	V0	V0	V0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand ² @ 1 MPa	°C-inch²/W	0.110	0.195	0.285
Widerstand² @ 200 kPa	°C-inch²/W	0.113	0.200	0.290
Widerstand² @ 70 kPa	°C-inch²/W	0.125	0.213	0.300
Thermische Leitfähigkeit Kapton®MT	W/mK	0.45	0.45	0.45
Phase-Change Temperatur	°C	ca. 60	ca. 60	ca. 60
ELEKTRISCH				
Durchschlagsspannung³	kV AC	5.5	9.2	12.3
Durchgangswiderstand	Ohm - cm	1.0 x 10 ¹⁴	1.0 x 10 ¹⁴	1.0 x 10 ¹⁴
Dielektrizitätskonstante	@ 1 MHz	4.2	4.2	4.2

Prüfmethode in Anlehnung an: 'ASTM D 412, 'ASTM D 5470, 'ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

Standarddicken: Kapton® MT 25 µm / 51 µm / 76 µm. Gesamtdicken: 51 µm / 77µm / 102 µm

PHASE CHANGE FILM TPC-W-PC

als Film oder mit Träger

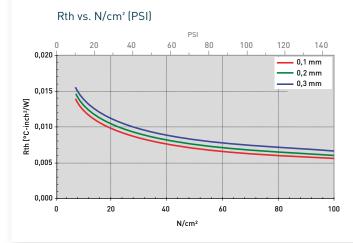
TPC-W-PC ist ein Phase-Change Film zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Der Compound benetzt beim Weichwerden oberhalb der Phase-Change Temperatur und unter sehr geringem Druck die unvermeidbaren Oberflächenrauhigkeiten sowie Unebenheiten und treibt die Lufteinschlüsse aus den Mikrostrukturen der Oberfläche aus. Auf Grund der speziellen Zusammensetzung und thixotropischen Eigenschaften kommt es weder zu Migration noch Auslaufen. Das Material ist als TPC-W-PC als Film oder auf verschiedenen Trägern zur einseitigen rückstandslosen Entfernung verfügbar.

EIGENSCHAFTEN

- Maximaler thermischer Kontakt
- Wärmeleitfähigkeit: 3,5 W/mK
- Silikonfrei
- Keine Migration, Auspumpen oder Auslaufen durch thixotropische Eigenschaft
- Ideale Alternative und Ersatz für Wärmeleitpaste
- □TPC-W-PC einseitig auf Trägern mit einseitiger Haftung für einfache rückstandslose Entfernung

LIEFERFORMEN

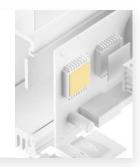
- Matte 305 x 152 mmRolle 356 mm (Liner 394 mm) x L
- (bis zu 150 m)
- TPC-WXXX-PC: Formteile zwischen Träger und Deckfolie
 Einseitig beschichtete Träger:
- Aluminium TPC-WXXX-PC-ALYYY
 Kupfer TPC-WXXX-PC-CUYYY


ANWENDUNGSBEISPIELE

- Thermische Anbindung von z.B.
- MOSFETs und IGBTs
- Memorybausteinen
- Bauelementen
- Prozessoren
- z.B. in Motorsteuerungen / Computern / Automationstechnik / Mikroelektronik

EIGENSCHAFT	EINHEIT	TPC-W100-PC	TPC-W200-PC	TPC-300-PC
MATERIAL		Phase Change Film	Phase Change Film	Phase Change Film
Farbe		Grau	Grau	Grau
Dicke gesamt	mm	0,1 +0,12	0,2 +0,23	0,3 +0.33
Dichte	g/cm³	2,0	2,0	2,0
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja
THERMISCH				
Widerstand¹ @ 1 MPa	°C-inch²/W	0,0056	0,0061	0,0067
Widerstand¹ @ 200 kPa	°C-inch²/W	0,0097	0,0103	0,0111
Widerstand¹ @ 70 kPa	°C-inch²/W	0,0138	0,0148	0,0158
Thermische Leitfähigkeit	W/mK	3,5	3,5	3,5
Phase Change Temperatur	°C	ca. 45	ca. 45	ca. 45
Lagerzeit	Monate	24	24	24
Max. Lagertemperatur	°C	27	27	27

Prüfmethode in Anlehnung an: ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.


Standarddicken: 0,1 mm / 0,2 mm / 0,3 mm / 0,4 mm

ALUMINIUMFILM MIT PHASE CHANGE TPC-R-AL

Phase Change beschichtet

TPC-R-AL ist ein Aluminiumfilm mit beidseitiger Phase Change Beschichtung zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Die Phase Change Beschichtung benetzt beim Weichwerden oberhalb der Phase Change Temperatur und unter geringem Druck die unvermeidbaren Oberflächenrauhigkeiten sowie Unebenheiten und treiben die Lufteinschlüsse aus den Mikrostrukturen der Oberfläche aus. Dadurch dass die Materialien einen positiven Temperaturkoeffizienten aufweisen, wird die Benetzung der Kontaktflächen verbessert. Auf Grund der speziellen Zusammensetzung und thixotropischen Eigenschaften kommt es weder zu Austrocknung, Migration noch Auslaufen. Die Verstärkung sorgt für höchste mechanische Stabilität und eine einfache Handhabung.

EIGENSCHAFTEN

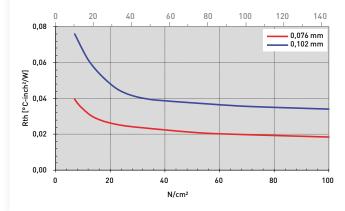
- Maximaler thermischer Kontakt
- Silikonfrei
- Keine Migration, Auspumpen oder Auslaufen durch thixotropische Eigenschaft
- □ Prozesssicher gleichmäßige Dicke
- ☐ Ideale Alternative und Ersatz für Wärmeleitpaste

LIEFERFORMEN

- ☐ Matte 305 x 610 mm oder 457 x 610 mm
- Rolle 292 mm oder 445 mm x 152 m
- Nicht haftend (TPC-RXXX-AL)
- ☐ Einseitig klebend mit PSA
- (TPC-RXXX-AL-A1)
- Mit Klebenlinien auf Anfrage
- Optional AL (25 / 51 / 76 / 127/ 254 μm), Beschichtung (13 / 25 / 51 μm) je Seite
- ☐ Als lose Formstanzteile oder Kiss Cut

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.


- MOSFETs und IGBTs
- Dioden und Gleichrichtern
- Bauelementen
- Prozessoren
- z.B. in Motorsteuerungen / Traktionsantrieben / Automationstechnik / Mikroelektronik

EINHEIT	TPC-R076-AL	TPC-R102-AL
	Aluminium mit beidseitiger Phase Change Beschichtung	Aluminium mit beidseitiger Phase Change Beschichtung
	Weiß	Weiß
μm	51 ±8	51 ^{±8}
μm	13	25
μm	76	102
2015 / 863 / EU	Ja	Ja
°C-inch²/W	0,019	0,034
°C-inch²/W	0,026	0,047
°C-inch²/W	0,040	0,076
°C	ca. 60	ca. 60
	μm μm 2015 / 863 / EU °C-inch²/W °C-inch²/W °C-inch²/W	Aluminium mit beidseitiger Phase Change Beschichtung Weiß μm 51 ±8 μm 13 μm 76 2015 / 863 / EU Ja °C-inch²/W 0,019 °C-inch²/W 0,026 °C-inch²/W 0,040

Prüfmethode in Anlehnung an: ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Standarddicken: 51 μm / 76 μm / 102 μm / 127 μm / 152 μm / 177 μm / 279 μm / 304 μm

Rth vs. N/cm² (PSI)

ALUMINIUMFILM MIT PHASE CHANGE TPC-T-AL-CB

Phase Change beschichtet

TPC-T-AL-CB ist ein Aluminiumfilm mit beidseitiger Phase-Change Beschichtung zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Die Phase-Change Beschichtung benetzt beim Weichwerden oberhalb der Phase-Change Temperatur und unter geringem Druck die unvermeidbaren Oberflächenrauhigkeiten sowie Unebenheiten und treiben die Lufteinschlüsse aus den Mikrostrukturen der Oberfläche aus. Dadurch dass die Materialien einen positiven Temperaturkoeffizienten aufweisen, wird die Benetzung der Kontaktflächen verbessert. Auf Grund der speziellen Zusammensetzung und thixotropischen Eigenschaften kommt es weder zu Austrocknung, Migration noch Auslaufen. Die Verstärkung sorgt für höchste mechanische Stabilität und eine einfache Handhabung.

EIGENSCHAFTEN

- Maximaler thermischer Kontakt
- Silikonfrei
- Keine Migration, Auspumpen und Auslaufen durch thixotropische Eigenschaft
- Prozesssicher gleichmäßige Dicke
- Ideale Alternative und Ersatz für Wärmeleitpaste

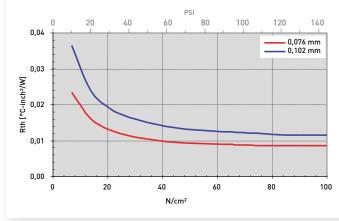
LIEFERFORMEN

- ☐ Matte 445 x 500 mm
- Rolle 445 mm x 152 m
- Nicht haftend (TPC-TXXX-AL-CB)
- Als lose Formstanzteile

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Dioden und Gleichrichtern
- Bauelementen
- Prozessoren


z.B. in Motorsteuerungen / Traktionsantrieben / Automationstechnik / Mikroelektronik

EIGENSCHAFT	EINHEIT	TPC-T076-AL-CB	TPC-T102-AL-CB
MATERIAL		Aluminium mit beidseitiger Grafit gefüllter Phase Change Beschichtung	Aluminium mit beidseitiger Grafit gefüllter Phase Change Beschichtung
Farbe		Schwarz	Schwarz
Dicke Aluminium	μm	51 ±8	51 ±8
Dicke Phase Change je Seite	μm	12,5	25,5
Gesamtdicke	μm	76	102
RoHS Konformität	2015 / 863 / EU	Ja	Ja
THERMISCH			
Widerstand¹ @ 1 MPa	°C-inch²/W	0,009	0,011
Widerstand¹ @ 200 kPa	°C-inch²/W	0,013	0,019
Widerstand¹ @ 70 kPa	°C-inch²/W	0,022	0,037
Phase Change Temperatur	°C	ca. 52	ca. 52

Prüfmethode in Anlehnung an: ¹ ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Phase-Change Beschichtungen je Seite: 12,5 μ m / 25,5 μ m Gesamtdicken: 76 μ m / 102 μ m

PHASE CHANGE COMPOUND TPC-W-PC-M/-E

TPC-W-PC ist ein thixotropischer Phase Change Compound zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Der Compound benetzt beim Weichwerden oberhalb der Phase Change Temperatur und unter sehr geringem Druck die Oberflächenrauhigkeiten sowie Unebenheiten und treibt die Lufteinschlüsse aus den Mikrostrukturen der Oberfläche aus. Die dünne Kontaktschichtdicke und die hohe Leitfähigkeit minimieren den thermischen Widerstand. Er kann mit Schablonendruck vorappliziert werden und ist nach Trocknung berührungstrocken und einbaubereit. TPC-W-PC-M und TPC-W-PC-E sind druckbare, alternativ lange und sehr lang trocknende Compounds. TPC-W-PC-E trocknet nur mit Zusatzwärme.

EIGENSCHAFTEN

- takt durch dünne Kontaktschichtdicke
- Silikonfrei ■ Wärmeleitfähigkeit: 3,5 W/mK
- Thixotropisch
- Ideale Alternative und Ersatz TPC-W-PC-E für Wärmeleitpaste

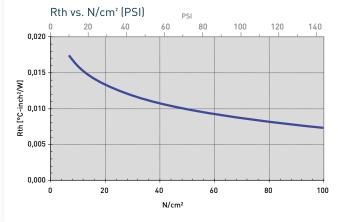
- Maximaler thermischer Kon- Genau automatisierte Aufbringung durch Schablonendruck für die Massenproduktion □ TPC-W-PC-M mittlere Trockenzeit: @ RT oder Zusatzwärme
 - lange Trockenzeit: Nur @ Zusatzwärme

LIEFERFORMEN

- ☐ TPC-W-PC-M und TPC-W-PC-E: Druckbare Typen mittlere -M und lange Trockenzeit -E
- E trocknet nur mit Zusatzwärme
- □ 360 ml SEMCO Kartuschen (transparent) ☐ 30 ml Kartuschen

ANWENDUNGSBEISPIELE

Thermische Anbindung von


- MOSFETs und IGBTs Memorybausteinen ☐ IGBT Leistungsmodulen
- Prozessoren z.B. in Motorsteuerungen / Computern / Automations-

technik / Mikroelektronik

EIGENSCHAFT	EINHEIT	TPC-W-PC-M	TPC-W-PC-E
MATERIAL		Trocknender Phase-Change Compound	Trocknender Phase-Change Compound
Farbe	••••••••••	Grau	Grau
Prozess	••••••	~ Druck	~ Druck
Dichte getrocknet ungetrocknet	g/cm³ g/cm³	1,8 @ RT 1,6 @ RT	1,8 @ RT 1,7 @ RT
Viskosität getrocknet @ 10 rpm ungetrocknet @ 10 rpm	Pas Pas	60 @ 60°C / 42 @ 80°C / 25 @ 100°C / 18 @ 120°C 85 @ RT	60 @ 60°C / 42 @ 80°C / 25 @ 100°C / 18 @ 120°C 96 @ RT
Trocknung @ Temperatur @ Dicke	Zeit	@ 22°C: @ 60°C: @ 125°C: 24 h (0,05 mm) 24 min (0,05 mm) 4 min (0,05 mm) 48 h (0,15 mm) 50 min (0,15 mm) 5 min (0,15 mm) 56 h (0,25 mm) 60 min (0,25 mm) 9 min (0,25 mm)	8 h (0,15 mm) 15 min (0,15 mm)
Lagerzeit (@ RT)	Monate	9	9
RoHS Konformität	2015/863/EU	Ja	Ja
THERMISCH			
Widerstand¹ @ 1 MPa	°C-inch²/W	0,007	0,007
Widerstand¹ @ 200 kPa	°C-inch²/W	0,013	0,013
Widerstand¹ @ 70 kPa	°C-inch²/W	0,017	0,017
Thermische Leitfähigkeit	W/mK	3,5	3,5
Phase Change Temperatur	°C	ca. 45	ca. 45
Betriebstemperaturbereich	°C	< 110	< 110
May Lagartemporatur	۰۰۰	25	25

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

Max. Lagertemperatur °C 25 25

PHASE CHANGE COMPOUND TPC-X-PC-NC-HT-M/-E

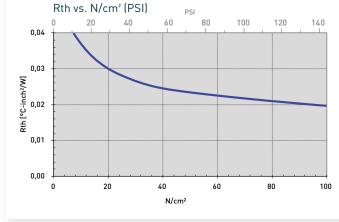
TPC-X-PC-NC-HT-M/-E ist ein thixotropischer dielektrischer Phase Change Compound zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Der Compound benetzt beim Weichwerden oberhalb der Phase Change Temperatur und unter sehr geringem Druck die Oberflächenrauhigkeiten sowie Unebenheiten und treibt die Lufteinschlüsse aus den Mikrostrukturen der Oberfläche aus. Die dünne Kontaktschichtdicke und die hohe Leitfähigkeit minimieren den thermischen Widerstand. Er kann mit Schablonendruck vorappliziert werden und ist nach Trocknung berührungstrocken und einbaubereit. Der Compound ist für Applikationen mit erhöhten Temperaturanforderungen entwickelt worden. TPC-X-PC-NC-HT-M und TPC-X-PC-NC-HT-E sind druckbare, alternativ lange und sehr lang trocknende Compounds. TPC-X-PC-NC-HT-E trocknet nur mit Zusatzwärme.

EIGENSCHAFTEN

- takt durch dünne Kontaktschichtdicke
- Silikonfrei ■ Wärmeleitfähigkeit: 3,0 W/mK
- Dielektrisch ■ Thixotropisch
- Ideale Alternative und Ersatz für Wärmeleitpaste
- Maximaler thermischer Kon- Genau automatisierte Aufbringung durch Schablonendruck für die Massenproduktion □ TPC-X-PC-NC-HT-M mittlere Trockenzeit: @ RT
 - oder Zusatzwärme □ TPC-X-PC-NC-HT-E
 - lange Trockenzeit: Nur @ Zusatzwärme

LIEFERFORMEN

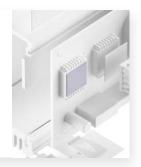
- □ TPC-X-PC-NC-HT-M und TPC-X-PC-NC-HT-E: Druckbare Typen mittlere -M und lange Trockenzeit -E
- □ -E trocknet nur mit
- Zusatzwärme ☐ 360 ml SEMCO Kartuschen (transparent)
- ☐ 30 ml Kartuschen


ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- MOSFETs und IGBTs
- Memorybausteinen
- ☐ IGBT Leistungsmodulen
- Prozessoren
- z.B. in Motorsteuerungen / Computern / Automationstechnik / Mikroelektronik

EIGENSCHAFT	EINHEIT	TPC-X-PC-NC-HT-M	TPC-X-PC-NC-HT-E	
MATERIAL		Trocknender Phase-Change Compound	Trocknender Phase-Change Compound	
Farbe	•••••••••	Weiß	Weiß	
Prozess	•••••••••••••••••••••••••••••••••••••••	~ Druck	~ Druck	
Dichte getrocknet ungetrocknet	g/cm³ g/cm³	1,1 @ RT 1,0 @ RT	1,10 @ RT 1,05 @ RT	
Viskosität getrocknet @ 10 rpm ungetrocknet @ 10 rpm	Pas Pas	65 @ 60°C / 38 @ 80°C / 25 @ 100°C / 18 @ 120°C 70	65 @ 60°C/38 @ 80°C/25 @ 100°C/18 @ 120°C 85	
Trocknung @ Temperatur @ Dicke	Zeit	6 22°C: 6 60°C: 6 125°C: 24h (0,05mm) 24 min (0,05mm) 4 min (0,05mm) 48h (0,15mm) 53 min (0,15mm) 6 min (0,15mm) 56h (0,25mm) 56 min (0,25mm) 10 min (0,25mm)	12 h (0,15 mm) 15 min (0,15 mm)	
Lagerzeit (@ RT)	Monate	9	9	
RoHS Konformität	2015/863/EU	Ja	Ja	
THERMISCH				
Widerstand¹ @ 1 MPa	°C-inch²/W	0,02	0,02	
Widerstand¹ @ 200 kPa	°C-inch²/W	0,03	0,03	
Widerstand¹ @ 70 kPa	°C-inch²/W	0,04	0,04	
Thermische Leitfähigkeit	W/mK	3,0	3,0	
Phase Change Temperatur	°C	ca. 45	ca. 45	
Betriebstemperaturbereich	°C	< 140	< 140	
Max. Lagertemperatur	°C	25	25	


Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

PHASE CHANGE COMPOUND TPC-Z-PC-HT-M/-E

Thixotropischer Phase Change Compound zur thermischen Anbindung von elektronischen Bauelementen an Kühlflächen. Der Compound benetzt beim Weichwerden oberhalb der Phase Change Temperatur und unter sehr geringem Druck die Oberflächenrauhigkeiten sowie Unebenheiten und treibt die Lufteinschlüsse aus den Mikrostrukturen der Oberfläche aus. Die dünne Kontaktschichtdicke und die hohe Leitfähigkeit minimieren den thermischen Widerstand. Er kann mit Schablonendruck vorappliziert werden und ist nach Trocknung berührungstrocken und einbaubereit. Der Compound ist für Applikationen mit erhöhten Temperaturanforderungen entwickelt worden.

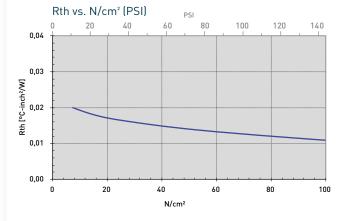
TPC-Z-PC-HT-M und TPC-Z-PC-HT-E sind druckbare, alternativ lange und sehr lang trocknende Compounds. TPC-Z-PC-HT-E trocknet nur mit Zusatzwärme.

EIGENSCHAFTEN

- takt durch dünne Kontaktschichtdicke
- Silikonfrei
- Wärmeleitfähigkeit: 3,0 W/mK Thixotropisch
- Ideale Alternative und Ersatz TPC-Z-PC-HT-E für Wärmeleitpaste
- Maximaler thermischer Kon- Genau automatisierte Aufbringung durch Schablonendruck für die Massenproduktion □ TPC-Z-PC-HT-M mittlere Trockenzeit: @ RT oder Zusatzwärme
 - lange Trockenzeit: Nur @ Zusatzwärme

LIEFERFORMEN

- ☐ TPC-Z-PC-HT-M und TPC-Z-PC-HT-E: Druckbare Typen mittlere - M und lange Trockenzeit -E
- □ -E trocknet nur mit Zusatzwärme
- ☐ 360 ml SEMCO Kartuschen (transparent)
- ☐ 30 ml Kartuschen


ANWENDUNGSBEISPIELE

Thermische Anbindung von

- MOSFETs und IGBTs Memorybausteinen ☐ IGBT Leistungsmodulen
- Prozessoren
- z.B. in Motorsteuerungen / Computern / Automationstechnik / Mikroelektronik

EIGENSCHAFT	EINHEIT	TPC-Z-PC-HT-M	TPC-Z-PC-HT-E
MATERIAL		Trocknender Phase-Change Compound	Trocknender Phase-Change Compound
Farbe	••••••••••	Grau	Grau
Prozess		~ Druck	~ Druck
Dichte getrocknet ungetrocknet	g/cm³ g/cm³	2,3 @ RT 2,0 @ RT	2,3 @ RT 2,1 @ RT
Viskosität getrocknet @ 10 rpm ungetrocknet @ 10 rpm	Pas Pas	45 @ 60°C / 30 @ 80°C / 21 @ 100°C / 15 @ 120°C 60	45 @ 60°C/30 @ 80°C/20 @ 100°C/15 @ 120°C 77,5
Trocknung @ Temperatur @ Dicke	Zeit	G 22°C: G 60°C: G 125°C: 24h (0,05 mm) 24 min (0,05 mm) 3 min (0,05 mm) 48h (0,15 mm) 50 min (0,15 mm) 5 min (0,15 mm) 56h (0,25 mm) 60 min (0,25 mm) 10 min (0,25 mm)	12h (0,15 mm) 15 min (0,15 mm)
Lagerzeit (@ RT)	Monate	9	9
RoHS Konformität	2015/863/EU	Ja	Ja
THERMISCH			
Widerstand¹ @ 1 MPa	°C-inch²/W	0,011	0,011
Widerstand¹ @ 200 kPa	°C-inch²/W	0,017	0,017
Widerstand¹ @ 70 kPa	°C-inch²/W	0,020	0,020
Thermische Leitfähigkeit	W/mK	3,0	3,0
Phase Change Temperatur	°C	ca. 45	ca. 45
Betriebstemperaturbereich	°C	< 140	< 140
Max. Lagertemperatur	°C	25	25

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

GRAFIT FOLIE TFO-S-CB

anisotrop wärmeleitend

TFO-S-CB ist eine Folie aus über 98% reinem Naturgrafit. Durch ihre flockenförmige Struktur weist das Material anisotrope Wärmeleitfähigkeiten in der Folienebene (x-y Ebene) und Senkrechten (z-Richtung) auf. Durch ihre Beschaffenheit passen sich die Folien den Kontaktflächen sehr gut an, wodurch der thermische Kontakt optimiert wird. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Durch die sehr geringe Dichte (15% von Kupfer, 50% von Aluminium) eignen sich die Materialien sehr gut für den Einsatz in Anwendungen mit hohen Anforderungen an das Gewicht. Die extrem hohe Temperaturbeständigkeit ermöglicht den Einsatz in extrem heißen Umgebungen.

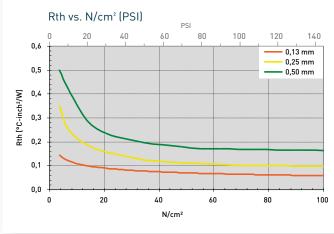
EIGENSCHAFTEN

- Sehr gute Oberflächenanpassung
- Sehr geringes Gewicht
- Silikonfrei
- ☐ Hohe Temperaturbeständigkeit☐ EMV-Abschirmung durch hohe
- EMV-Abschirmung durch hohe elektrische Leitfähigkeit als Zusatzeffekt

LIEFERFORMEN

- Matte 300 x 500 mm
- □ Rolle 300 mm x 50 m
- Als lose Formstanzteile
- Nicht klebend (TFO-SXXX-CB)
- □ Einseitig klebend (TFO-SXXX-CB-A1)

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- CPUs
- Leistungsmodule
- Elektronische Bauelemente in Wechselrichter
- z.B. in Stromversorgungen und Wechselrichtern / Computer / Laptop / Automotiveanwendungen

EINHEIT	TF0-S130-CB	TFO-S250-CB	TFO-S500-CB
	Naturgrafit 98%	Naturgrafit 98%	Naturgrafit 98%
	Grau	Grau	Grau
mm	0,13 ±0,03	0,25 ±0,03	0,5 ±0,03
Shore A	85	85	85
UL 94	V0	V0	V0
2015 / 863 / EU	Ja	Ja	Ja
°C-inch²/W	0,06	0,10	0,16
°C-inch²/W	0,09	0,16	0,23
°C-inch²/W	0,12	0,24	0,40
W/mK	8	8	8
W/mK	140	140	140
°C	- 250 bis + 400	- 250 bis + 400	- 250 bis + 400
Ohm - cm	11,0 x 10 ⁻⁴	11,0 x 10 ⁻⁴	11,0 x 10 ⁻⁴
@ 1 MHz	< 0,001	< 0,001	< 0,001
	mm Shore A UL 94 2015 / 863 / EU °C-inch²/W °C-inch²/W W/mK W/mK °C	Naturgrafit 98% Grau mm	Naturgrafit 98% Naturgrafit 98%

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

Standarddicken: 0,13 mm / 0,25 mm / 0,5 mm

PYROLYTISCHE GRAFIT FOLIE TFO-Y-PG

anisotrop hoch wärmeleitend

TFO-Y-PG ist eine Folie aus reinem pyrolytischem Grafit. Durch seine synthetische Struktur weist das Material hohe anisotrope spreizende Wärmeleitfähigkeiten in der Folienebene (x-y Ebene) und Senkrechten (z-Richtung) auf. Durch ihre Beschaffenheit passen sich die Folien den Kontaktflächen sehr gut an, wodurch der thermische Kontakt optimiert wird. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Durch die sehr geringe Dichte eignen sich die Materialien sehr gut für den Einsatz in Anwendungen mit hohen Anforderungen an das Gewicht. Die extrem hohe Temperaturbeständigkeit ermöglicht den Einsatz in extrem heißen Umgebungen. Durch ihre Flexibilität ist die Folie biegsam. Sie kann bei Geometrien mit Wölbungen oder Kanten ohne Änderung der thermischen Leitfähigkeit verwendet werden. Sie läßt sich in Sonderausführungen dielektrisch oder mit Elastomeren ausführen.

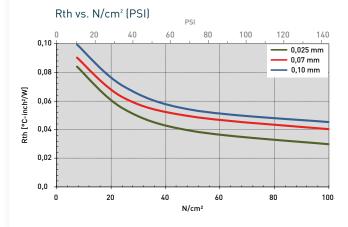
EIGENSCHAFTEN

- Sehr gute Oberflächenanpassung und Biegsamkeit
- Sehr geringes Gewicht
- Silikonfrei
- ☐ Hohe Temperaturbeständigkeit
- EMV-Abschirmung durch hohe elektrische Leitfähigkeit als Zusatzeffekt
- UL VO

LIEFERFORMEN

- ☐ Matte 115 x 180 mm
- Matte 180 x 230 mm (0,07 – 0,1 mm Dicke)
- Nicht klebend (TFO-YXXX-PG)
- ☐ Einseitig klebend (TFO-YXXX-PG-A1)
- Als lose Formstanzteile

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.

- CPUs
- Peltierelementen
- Laserdioden
- z.B. in Hochleistungsrechnern / Analysegeräten / Photonik /

EIGENSCHAFT	EINHEIT	TF0-Y025-PG	TFO-Y070-PG	TF0-Y100-PG	
MATERIAL		Pyrolytisches Grafit	Pyrolytisches Grafit	Pyrolytisches Grafit	
Farbe		Grau	Grau	Grau	
Dicke	mm	0,025 ±0,010	0,07 ±0,015	0,10 ±0,030	
Dichte	g/cm³	1,9	1,21	0,85	
Entflammbarkeit	UL 94	V0	V0	V0	
RoHS Konformität	2015 / 863 / EU	Ja	Ja	Ja	
THERMISCH					
Widerstand¹ @ 1 MPa	°C-inch²/W	0,03	0,04	0,045	
Widerstand¹ @ 200 kPa	°C-inch²/W	0,06	0,07	0,08	
Widerstand¹ @ 70 kPa	°C-inch²/W	0,08	0,09	0,10	
Thermische Leitfähigkeit (Z Richtung)	W/mK	18	20	25	
Thermische Leitfähigkeit (X-Y Richtung)	W/mK	1.600	1.000	700	
Betriebstemperaturbereich	°C	- 250 bis + 400	- 250 bis + 400	- 250 bis + 400	
ELEKTRISCH					
Elektrische Leitfähigkeit	S/cm	20.000	10.000	10.000	

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50 % rel. Feuchte.

Standarddicken: 0,025 mm / 0,04 mm / 0,05 mm / 0,07 mm / 0,10 mm

PYROLYTISCHE GRAFIT FOLIE TFO-ZS-PG

weich, anisotrop hoch wärmeleitend

TFO-ZS-PG ist eine Folie aus reinem weichem pyrolytischem Grafit. Durch seine synthetische Struktur weist das Material eine hohe Wärmeleitfähigkeit in der Folienebene (x-y Ebene) anisotrop zur Wärmespreizung und eine extrem hohe Leitfähigkeit in der Senkrechten (z-Richtung) auf. Durch seine Flexibilität paßt sich die Folie unebenen Kontaktflächen z.B. IGBT Basisplatten sehr gut an, wodurch der thermische Kontakt optimiert wird. Der thermische Gesamtübergangswiderstand wird dadurch minimiert. Verglichen mit Kupfer oder Aluminium eignen sich die Materialien sehr gut für den Einsatz in Anwendungen mit hohen Anforderungen an das Gewicht. Die extrem hohe Temperaturbeständigkeit ermöglicht den Einsatz in sehr heißen Umgebungen.

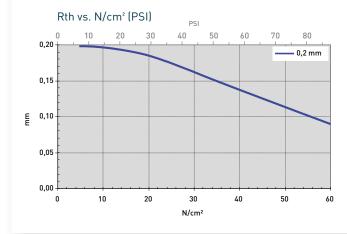
EIGENSCHAFTEN

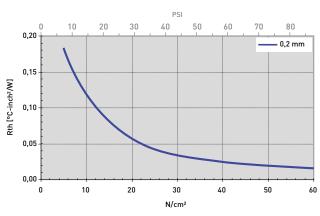
- Sehr gute Oberflächenanpassung und Biegsamkeit
- Sehr weich
- Sehr geringes Gewicht
- Silikonfrei
- ☐ Hohe Temperaturbeständigkeit
- EMV-Abschirmung durch hohe elektrische Leitfähigkeit als Zusatzeffekt

LIEFERFORMEN

- Matte 90 x 90 mm
- Matte 90 x180 mm
- Matte 180 x180 mm
- ☐ Als lose Formstanzteile

ANWENDUNGSBEISPIELE


Thermische Anbindung von z.B.


- IGBT Leistungsmodulen
- Peltierelementen
- Laserdioden
- ☐ High Power LEDs
- z.B. bei Kühlplatten / Hochleistungsrechnern / Analysegeräten / Photonik / Leuchtmitteln

EIGENSCHAFT	EINHEIT	TF0-ZS200-PG
MATERIAL		Weiches pyrolytisches Grafit
Farbe		Grau
Dicke	mm	0,2 ±0.05
Dichte	g/cm³	0,5
Entflammbarkeit	UL 94	VO
RoHS Konformität	2015 / 863 / EU	Ja
THERMISCH		
Widerstand¹ @ 600 kPa @ Dicke	°C-inch²/W (mm)	0,015 (0,09)
Widerstand¹ @ 200 kPa @ Dicke	°C-inch²/W (mm)	0,055 (0,18)
Widerstand¹ @ 70 kPa Dicke	°C-inch²/W (mm)	0,181 (0,19)
Thermische Leitfähigkeit (Z Richtung)	W/mK	30
Thermische Leitfähigkeit (X-Y Richtung)	W/mK	500
Betriebstemperaturbereich	°C	- 250 bis + 400
ELEKTRISCH		
Elektrische Leitfähigkeit	S/cm	10,000

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

Standarddicken: 0,20 mm

PSA KLEBEBAND TAT-J-PE

Akrylatkleber mit Polyester Isolationsfilm

TAT-J-PE ist ein thermisch leitfähiges PSA-Klebeband mit einer elektrisch isolierenden Polyester Filmverstärkung. Durch den beidseitigen Akrylatkleber wird der thermische Kontaktwiderstand bei niedrigem Druck auf ein Minimum reduziert. Unebenheiten der Kontaktflächen und Toleranzen lassen sich dadurch sehr gut ausgleichen. Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten können damit sicher verbunden und thermisch gut angebunden werden. Der thermische Gesamtübergangswiderstand wird minimiert. Das Material eignet sich zur einfachen, wirkungsvollen und kostengünstigen thermischen Anbindung in einem breiten Anwendungsbereich vor allem dort wo nur geringer Platz zur Verfügung steht und es auf geringes Gewicht ankommt. Mechanische Befestigungen durch Schrauben, Klammern oder Nieten werden verzichtbar.

EIGENSCHAFTEN

- Niedriger thermischer Widerstand
- Hohe dielektrische Durchschlagsfestigkeit
- Zuverlässige Klebkraft auf unebenen oder schwierig zu behandelnden Oberflächen
- Silikonfrei
- Kein Mischen von Komponenten und Aushärteprozesse wie bei flüssigen Klebstoffen
- ☐ Hohe mechanische Stabilität und leichte Handhabung durch Polyesterfilm
- Mechanische Befestigungen durch Schrauben, Klammern oder Nieten werden verzichtbar

LIEFERFORMEN

- Matte
- ☐ Rolle 10~1.000 mm x 20 m ☐ Beidseitig klebend
- (TAT-J200-PE)
- ☐ Als Formstanzteile
- Kiss cut auf Bogen

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- LEDs
- MOSFETs und IGBTs
- Dioden
- Gleichrichter

z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen / Solartechnik / LED Feldern

EIGENSCHAFT	EINHEIT	TAT-J200-PE
MATERIAL		Thermisch leitfähiges Akrylat Klebeband mit Polyester Filmverstärkung
Farbe		Weiß
Tape Dicke	mm	0,20 ±0,03
PE Film Dicke	μm	12
Abschälfestigkeit (@ Rostfreier Stahl, @ RT)	N/cm	5,6
Abschälfestigkeit (@ AL6063, @ RT)	N/cm	6,1
Entflammbarkeit	UL 94	V0
RoHS Konformität	2015 / 863 / EU	Ja
THERMISCH		
Thermische Leitfähigkeit	W/mK	0,70
Widerstand¹ @ 50 kPa	°C-inch²/W	0,73
Widerstand¹ @ 500 kPa	°C-inch²/W	0,50
Betriebstemperaturbereich	°C	- 40 bis + 125
ELEKTRISCH		
Durchschlagsspannung	kV AC	8,9

Prüfmethode in Anlehnung an: 'ASTM D 5470. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen. Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

PSA KLEBEBAND TAT-M-SI

Silikonkleber, thermisch leitfähig

TAT-M-SI ist ein thermisch leitfähiges PSA-Transferklebeband. Durch den Silikonkleber wird der thermische Kontaktwiderstand bei niedrigem Druck auf ein Minimum reduziert. Unebenheiten der Kontaktflächen und Toleranzen lassen sich dadurch sehr gut ausgleichen. Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten können damit sicher verbunden und thermisch gut angebunden werden. Der thermische Gesamtübergangswiderstand wird minimiert. Das Material eignet sich zur einfachen, wirkungsvollen und kostengünstigen thermischen Anbindung in einem breiten Anwendungsbereich vor allem dort wo nur geringer Platz zur Verfügung steht und es auf geringes Gewicht ankommt. Mechanische Befestigungen durch Schrauben, Klammern oder Nieten werden verzichtbar.

EIGENSCHAFTEN

- □ Niedriger thermischer Widerstand
- □ Wärmeleitfähigkeit: 1,0 W/mK□ Hohe dielektrische Durchschlagsfestigkeit
- ☐ Zuverlässige Klebkraft auf unebenen oder schwierig zu behandelnden Oberflächen
- ☐ Kein Mischen von Komponenten und Aushärteprozesse wie bei flüssigen Klebstoffen
- Mechanische Befestigungen durch Schrauben, Klammern oder Nieten werden verzichtbar

LIEFERFORMEN

- ☐ Matte 300 mm x 400 mm
- □ Rolle 300 mm x 50 m
- Beidseitig klebend
- Als Formstanzteile

ANWENDUNGSBEISPIELE

 $Thermische \ Anbindung \ von \ z.B.$

- MOSFETs und IGBTs
- Dioden
- LEDs
- z.B. in Wechselrichtern und Stromversorgungen / LED Leuchtkörper / Motorsteuerungen / Automotiveanwendungen / Solartechnik

EIGENSCHAFT	EINHEIT	TAT-M100-SI	TAT-M200-SI
MATERIAL		Keramik gefüllter Silikon PSA Kleber	Keramik gefüllter Silikon PSA Kleber
Farbe	•	Weiß	Weiß
Dicke	mm	0,10 ±0,01	0,20 ±0,02
Abschälfestigkeit (@ 23°C) @ Aluminium / @ Glass	N/cm	6,0 / 7,6	6,4 / 7,6
Scherfestigkeit (@ 125 °C nach 10.000 h)	N/cm²	> 200	> 200
RoHS Konformität	2015 / 863 / EU	Ja	Ja
Entflammbarkeit	UL94	V0	V0
THERMISCH			
Thermische Leitfähigkeit	W/mK	1,0	1,0
Widerstand¹	°C-inch/W	0,28	0,49
ELEKTRISCH			
Durchschlagsspannung² (@ Anfangsdicke, 25°C)	kV AC	2,0	5,0

Prüfmethode in Anlehnung an: 'ASTM D 5470, 'ASTM D 149. Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen Haltbarkeit Kleber: 6 Monate bei Lagerung in Originalverpackung bei Raumtemperatur und 50% rel. Feuchte.

Standarddicken: 0,10 mm / 0,20 mm

SILIKONFREIE WÄRMELEITPASTE TGR-J-NS

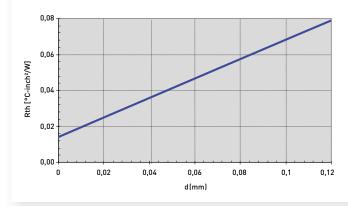
hoch thermisch leitfähig

TGR-J-NS ist eine thermisch leitfähige Paste auf der Basis einer silikonfreien Matrix aus Esteröl. Mit ihr lassen sich sehr gute und hochzuverlässige thermische Anbindungen elektronischer Bauelemente erreichen. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine hohe thermische Leitfähigkeit. Durch ihren Einsatz werden der thermische Kontakt- und Gesamtübergangswiderstand minimiert.

EIGENSCHAFTEN

- Wärmeleitfähigkeit: 2,0 W/mK
- Silikonfrei
- Dispensierbar
- Fast drucklose Aufbringung
- Dielektrisch durchschlagsfest
- ☐ Betriebstemperaturbereich: -40 bis +150°C

LIEFERFORMEN


- ☐ Kartusche 340 ml
- □ Dose 1 kg

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- LED Boards
- Leistungsmodulen
- ☐ RDRAM Speicherbausteine
- ☐ Flip Chips, DSPs, BGAs, PPGAs
- z.B. in Automotiveanwendungen / Leistungselektronik / Lichttechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	TGR-J-NS
MATERIAL		Keramik gefüllte Wärmeleitpaste
Farbe		Weiss
Dichte	g /cm³	3,1
Viskosität (Brookfield @ 10 rpm, 25°C)	Pas	170
RoHS Konformität	2015 / 863 / EU	Ja
THERMISCH		
Thermische Leitfähigkeit	W/mK	2,0
Betriebstemperaturbereich	°C	- 40 bis + 150
Lagertemperatur	°C	< 35 °C
Haltbarkeit (ab Herstelldatum, ungeöffnet)	Monate @ RT	12
ELEKTRISCH		
Durchschlagsfestigkeit	kV / mm	5,0

SILIKONFREIE WÄRMELEITPASTETGR-M-NS

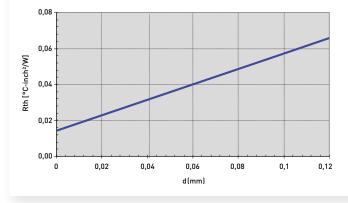
hoch thermisch leitfähig

TGR-M-NS ist eine thermisch sehr leitfähige Paste auf der Basis einer silikonfreien Matrix aus Esteröl. Mit ihr lassen sich sehr gute und hochzuverlässige thermische Anbindungen elektronischer Bauelemente erreichen. Durch die Formulierung und Füllung des Materials mit Keramikpulver ergibt sich eine hohe thermische Leitfähigkeit. Durch ihren Einsatz werden der thermische Kontakt- und Gesamtübergangswiderstand minimiert.

EIGENSCHAFTEN

- Wärmeleitfähigkeit: 2,4 W/mK
- Silikonfrei
- Dispensierbar
- □ Fast drucklose Aufbringung
- Dielektrisch durchschlagsfest
- ☐ Betriebstemperaturbereich: -40 bis +150°C

LIEFERFORMEN


- Kartusche 340 ml
- □ Dose 1 kg

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- LED Boards
- Leistungsmodulen
- RDRAM Speicherbausteine
- ☐ Flip Chips, DSPs, BGAs, PPGAs
- z.B. in Automotiveanwendungen / Leistungselektronik / Lichttechnik / Industriecomputer

EIGENSCHAFT	EINHEIT	TGR-M-NS
MATERIAL		Keramik gefüllte Wärmeleitpaste
Farbe		Weiss
Dichte	g /cm³	3,2
Viskosität (Brookfield @ 10 rpm, 25°C)	Pas	110
RoHS Konformität	2015 / 863 / EU	Ja
THERMISCH		
Thermische Leitfähigkeit	W/mK	2,4
Betriebstemperaturbereich	°C	- 40 bis + 150
Lagertemperatur	°C	< 35 °C
Haltbarkeit (ab Herstelldatum, ungeöffnet)	Monate @ RT	12
ELEKTRISCH		
Durchschlagsfestigkeit	kV / mm	4,5

SILIKONKLEBER TAD-G-SI-1C

thermisch leitfähig 1K / additionsvernetzend

TAD-G-SI-1C ist ein additionsvernetzender, nicht korrosiver thermisch leitfähiger, flüssiger 1 Komp. Silikonkleber. Er vulkanisiert bei erhöhter Temperatur über 100°C zu einer stabilen und elastischen Verbindung bei den meisten Oberflächen aus, ohne dass ein Primer erforderlich ist. Er zeichnet sich durch eine gute Wärmeleitfähigkeit aus. Er kann bis 260°C Dauerbetriebstemperatur eingesetzt werden und oxidiert ausgehärtet nicht Kupfer oder dessen Legierungen. Der Kleber ist beständig gegenüber Wasser, Säuren und Laugen sowie den meisten organischen Lösungsmitteln und ist besonders geeignet bei Applikationen in denen hohe Klebkraft und Präzision, schnelle Aushärtung und eine hohe Wärmeleitfähigkeit erforderlich sind.

EIGENSCHAFTEN

- Wärmeleitfähigkeit: 1,38 W/mK
- Hohe Dauerklebkraft
- Additionsvernetzend bei Wärme
- Nicht korrosiv
- ☐ Hoher Betriebstemperaturbereich bis 260°C
- Extrem alterungs-/chemisch beständig

LIEFERFORMEN

- ☐ 1 kg Dose
- 310 ml Kartusche
- Andere Behälter auf Anfrage
- Optional mit Glaskugeln

ANWENDUNGSBEISPIELE

- LED Systeme
- □ Processorkühlung
- Speicherbausteinkühlung
- CPU Boards

EIGENSCHAFT	EINHEIT	TAD-G-SI-1C
MATERIAL		Silikon
Farbe		Grau
Spezifische Dichte	g/cm³	2,06
Lineare Schrumpfung	%	2,0
Viskosität	Pas	43
Härte	Shore A	67
Zugfestigkeit	MPa	3,1
Bruchdehnung	%	70
Aushärtung (@ 100°C)	min	30
Haltbarkeit (ab Herstelldatum, ungeöffnet @ < 15°C)	Monate	6
Entflammbarkeit	UL 94	HB (1,5 mm)
RoHS Konformität	2015 / 863 / EU	Ja
THERMISCH		
Thermische Leitfähigkeit	W/mK	1,38
Ausdehnungskoeffizient Volumetrisch	x 10 ⁻⁶ /K	562
Ausdehnungskoeffizient Linear	x 10 ⁻⁶ /K	187
Betriebstemperaturbereich	°C	- 50 bis + 260
ELEKTRISCH		
Durchschlagsfestigkeit	kV/mm	22,5
Durchgangswiderstand	0hm - cm	7,7 x 10 ¹⁵
Oberflächenwiderstand	0hm - cm	1,3 x 10 ¹⁵

KLEBER

SILIKONKLEBER TAD-0-SI-1C

thermisch leitfähig 1K / additionsvernetzend

TAD-0-SI-1C ist ein additionsvernetzender, nicht korrosiver thermisch leitfähiger 1 Komp. Silikonkleber. Er vulkanisiert bei erhöhter Temperatur zu einer stabilen und elastischen Verbindung bei den meisten Oberflächen aus, ohne dass ein Primer erforderlich ist. Er zeichnet sich durch eine hohe Wärmeleitfähigkeit und Thixotropie aus, wodurch es zu keinem Setzen und Verfließen kommt. Er kann bis 210°C Dauerbetriebstemperatur eingesetzt werden und oxidiert ausgehärtet nicht Kupfer oder dessen Legierungen. Der Kleber ist beständig gegenüber Wasser, Säuren und Laugen sowie den meisten organischen Lösungsmitteln und ist besonders geeignet bei Applikationen in denen hohe Klebkraft und Präzision, schnelle Aushärtung und eine hohe Wärmeleitfähigkeit erforderlich sind.

EIGENSCHAFTEN

- Wärmeleitfähigkeit: 2,1 W/mK
- Hohe Dauerklebkraft
- Additionsvernetzend bei Wärme
- Nicht korrosiv
- ☐ Kein Verfließen im Prozess durch Thixotropie
- □ Hoher Betriebstemperaturbereich bis 210°C
- Extrem alterungs-/chemisch beständig

LIEFERFORMEN

- ☐ 1 kg Dose
- ☐ 310 ml Kartusche
- Andere Behälter auf Anfrage
- Optional mit Glaskugeln

ANWENDUNGSBEISPIELE

- LED Systeme
- Processorkühlung
- Speicherbausteinkühlung
- CPU Boards

EIGENSCHAFT	EINHEIT	TAD-0-SI-1C
MATERIAL		Silikon
Farbe		Grau
Spezifische Dichte	g/cm³	2,18
Viskosität	Pas	140
Härte	Shore A	56
Zugfestigkeit	MPa	2,20
Bruchdehnung	%	105
Aushärtung (3 mm @ 125 °C / @ 100 °C)	min	10 / 16
Haltbarkeit (ab Herstelldatum, ungeöffnet @ 10 - 30 °C / @ < 10 °C)	Monate	2/12
Entflammbarkeit	UL 94	HB (1,5 mm, V0 6,0 mm)
RoHS Konformität	2015 / 863 / EU	Ja
THERMISCH		
Thermische Leitfähigkeit	W/mK	2,10
Ausdehnungskoeffizient Volumetrisch	x 10 ⁻⁶ /K	586
Ausdehnungskoeffizient Linear	x 10 ⁻⁶ /K	195
Betriebstemperaturbereich	°C	- 50 bis + 210
ELEKTRISCH		
Durchschlagsfestigkeit	kV/mm	> 18
Durchgangswiderstand	0hm - cm	> 3,5 x 10 ¹³

SILIKONKLEBER TAD-P-SI-1C

thermisch leitfähig 1K / RTV kondensationsvernetzend

TAD-P-SI-1C ist ein kondensationsvernetzender, nicht korrosiver thermisch leitfähiger 1 Komp. Silikonkleber. Er vulkanisiert bei Raumtemperatur (RTV) zu einer stabilen und elastischen Verbindung bei den meisten Oberflächen aus, ohne dass ein Primer erforderlich ist. Aufgrund des acetatischen Aushärtens bei Raumfeuchte ist er lösungsmittelfrei. Er zeichnet sich durch eine hohe Wärmeleitfähigkeit und Thixotropie aus, wodurch es zu keinem Setzen und Verfließen kommt. Er kann bis 220°C Dauerbetriebstemperatur eingesetzt werden und oxidiert ausgehärtet nicht Kupfer oder dessen Legierungen. Der Kleber ist beständig gegenüber Wasser, Säuren und Laugen sowie den meisten organischen Lösungsmitteln und ist besonders geeignet bei Applikationen in denen hohe Klebkraft und Präzision, schnelle Aushärtung und eine hohe Wärmeleitfähigkeit erforderlich sind.

EIGENSCHAFTEN

- Wärmeleitfähigkeit: 2,3 W/mK
- Hohe Dauerklebkraft
- ☐ Härtet bei Raumtemperatur (RTV kondensationsvernetzend)
- Sehr schnell berührungstrocken
- Geringe lineare Schrumpfung
- Nicht korrosiv
- ☐ Kein Verfließen im Prozess durch Thixotropie
- ☐ Hoher Betriebstemperaturbereich bis 220°C
- Extrem alterungs-/chemisch beständig

LIEFERFORMEN

- ☐ 310 ml Kartusche Andere Behälter
- auf Anfrage Optional mit Glas-
- kugeln

ANWENDUNGSBEISPIELE

- □ LED Systeme
- Processorkühlung
- Speicherbausteinkühlung
- CPU Boards

EIGENSCHAFT	EINHEIT	TAD-P-SI-1C
MATERIAL		Silikon
Farbe	•••••	Grau
Spezifische Dichte	g/cm³	2,11
Lineare Schrumpfung	%	0,5
Viskosität	Pas	350
Härte	Shore A	67
Zugfestigkeit	MPa	3,9
Bruchdehnung	%	103
Berührtrocken (@ 23°C und 65 % RH)	min	4
Aushärtung (3 mm @ 23 °C und 65 % RH)	h	<8
Volle Aushärtung	Tage	7
Scherfestigkeit (Al / Cu / St 304 / PC)	kg/cm²	7,15 / 3,6 / 2,98 / 4,62
Haltbarkeit (ab Herstelldatum, ungeöffnet)	Monate	12
Max. Lagertemperatur	°C	40
RoHS Konformität	2015 / 863 / EU	Ja
THERMISCH		
Thermische Leitfähigkeit	W/mK	2,3
Ausdehnungskoeffizient Volumetrisch	x 10 ⁻⁶ /K	493
Ausdehnungskoeffizient Linear	x 10 ⁻⁶ /K	164
Betriebstemperaturbereich	°C	- 50 bis + 220
ELEKTRISCH		
Durchschlagsfestigkeit	kV/mm	> 20
Durchgangswiderstand	Ohm - cm	> 1 x 10 ¹⁴
Dielektrizitätskonstante	@ 1 MHz	4,9

SILIKON VERGUSSMASSE TCR-D-SI-2C

dispensierbar / 2 komponentig

TCR-D-SI-2C ist eine mit wärmeleitenden Füllstoffen formulierte, temperaturbeständige, additionsvernetzende 2 Komponenten Vergussmasse auf Silikon-Basis. Nach der Aushärtung ist das System zähelastisch. Die Vergussmasse zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Verguss von elektrischen und elektronischen Bauteilen, wie Transformatoren, Kondensatoren, Spulen, Sensoren, LEDs und kann als Mehrzweckvergussmasse sowohl unter Normalbedingungen als auch im Vakuum vergossen werden. Durch das Fließverhalten ist es auch für den Verguss schwer zugänglicher Bauteilgeometrien geeignet.

EIGENSCHAFTEN

- Silikon
- Zweikomponentig additionsvernetzend
- Wärmeleitfähigkeit: 0,68 W/mK
- Zähelastisch nach Aushärtung
- Minimale Spannungen auf Bauelemente
- □ Dispensier- oder vergießbar
- ☐ Hohe Wasser- und Feuchtebeständigkeit
- Vibrationsdämpfend

LIEFERFORMEN

☐ Behälter 2 kg /40 kg (2 x 20 kg) AB Kit

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- Heat Pipes
- BGA

z.B. in Automotiveanwendungen / Telekommunikation / Steuereinheiten / Industriecomputer

EIGENSCHAFT	EINHEIT	A-KOMPONENTE	B-KOMPONENTE
MATERIAL		Silikon	Härter
Farbe		Beige	Schwarz
Dichte @ 23 °C	g/cm³	1,6	1,6
Mischungsverhältnis	Gew. oder Vol.	1:1	1:1
Härte	Shore A	45	45
Viskosität (Brookfield)	Pas	6	6
Viskosität (gemischt) (Brookfield)	Pas	6	6
Zugfestigkeit (7 Minuten Aushärtung @ 150 °C)	MPa	1,72	1,72
Bruchdehnung (7 Minuten Aushärtung @ 150 °C)	%	240	240
Wärmeausdehnungskoeffizient (7 Minuten Aushärtung @ 150°C) Volumetrisch Linear	1 x 10 ⁻⁶ /K 1 x 10 ⁻⁶ /K	650 217	650 217
Topfzeit @ 23 °C, 65 % rel. F.	Minuten	ca. 100	ca. 100
Aushärtezeit @ 25 °C / 100 °C		24 Stunden / 7 Minuten	24 Stunden / 7 Minuten
Haltbarkeit (ab Herstelldatum, ungeöffnet @ < 30°C)	Monate	24	24
Entflammbarkeit	UL 94	VO	VO
RoHS Konformität	2015 / 863 / EU	Ja	Ja
TECHNISCH			
Thermische Leitfähigkeit	W/mK	0,68	0,68
Betriebstemperaturbereich	°C	- 55 bis + 260	- 55 bis + 260
Durchschlagsfestigkeit	kV/mm	> 18	> 18
Durchgangswiderstand	0hm - cm	4,02 x 10 ¹⁴	4,02 x 10 ¹⁴
Dielektrizitätskonstante		3,08	3,08
Verlustfaktor		0,009	0,009

VERGUSSMASSE

SILIKON VERGUSSMASSE TCR-H-SI-2C

dispensierbar / 2 komponentig / niedrige Viskosität

TCR-H-SI-2C ist eine mit wärmeleitenden Füllstoffen formulierte, temperaturbeständige, additionsvernetzende 2 Komponenten Vergussmasse auf Silikon-Basis. Die Vergussmasse zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Verguss von elektrischen und elektronischen Bauteilen, wie Transformatoren, Kondensatoren, Spulen, Sensoren, LEDs und kann als Mehrzweckvergussmasse sowohl unter Normalbedingungen als auch im Vakuum vergossen werden. Durch das Fließverhalten ist es auch für den Verguss schwer zugänglicher Bauteilgeometrien geeignet.

EIGENSCHAFTEN

Silikon

■ Niedrige Viskosität

Zweikomponentig additionsvernetzend

■ Wärmeleitfähigkeit: 1,2 W/mK

Minimale Spannungen auf Bauelemente

■ Dispensier- oder vergießbar

■ Wärme beschleunigte Aushärtung

☐ Hohe Wasser- und Feuchtebeständigkeit

Vibrationsdämpfend

LIEFERFORMEN

☐ Behälter 2 kg / 10 kg (2 x 5 kg) AB Kit

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

Induktivitäten

Kapazitäten

Heat Pipes

BGA

z.B. in Automotiveanwendungen / Telekommunikation / Steuereinheiten / Industriecomputer

EIGENSCHAFT	EINHEIT	A-KOMPONENTE	B-KOMPONENTE
MATERIAL		Silikon	Silikon
Farbe		Hellgrau	Orange
Dichte @ ~23°C	g/cm³	2,2	2,2
Mischungsverhältnis	Gew. oder Vol.	1:1	1:1
Härte (7 Tage @ ~23 °C und 50 % rel. F.)	Shore A	40	40
Viskosität (Brookfield)	Pas	2	1,9
Viskosität (gemischt) (Brookfield)	Pas	1,95	1,95
Zugfestigkeit (7 Tage @ ~23°C und 50% rel. F.)	MPa	0,81	0,81
Bruchdehnung (7 Tage @ ~23 °C und 50 % rel. F.)	%	30	30
Reissfestigkeit (7 Tage @ ~23 °C und 50 % rel. F.)	kN/m	4,56	4,56
E-Modul (7 Tage @ ~23 °C und 50 % rel. F.)	MPa	4,98	4,98
Wärmeausdehnungskoeffizient (7 Tage @ ~23°C und 50% rel. F.) Volumetrisch Linear Lineare Schrumpfung (7 Tage @ ~23°C und 50% rel. F.)	1 x 10 ⁻⁶ /K 1 x 10 ⁻⁶ /K %	402 134 0,03	402 134 0,03
Topfzeit	Minuten	ca. 50	ca. 50
Aushärtezeit @ 25°C / 100°C	•••••	4 Stunden / 6 Minuten	4 Stunden / 6 Minuten
Haltbarkeit (ab Herstelldatum, ungeöffnet @ < 30°C)	Monate	12	12
Entflammbarkeit	UL 94	VO (5,6 mm)	VO (5,6 mm)
RoHS Konformität	2015 / 863 / EU	Ja	Ja
TECHNISCH			
Thermische Leitfähigkeit	W/mK	1,2	1,2
Betriebstemperaturbereich	°C	- 70 bis + 250	- 70 bis + 250
Durchschlagsfestigkeit	kV/mm	14	14
Durchgangswiderstand	0hm-cm	1,8 x 10 ¹⁴	1,8 x 10 ¹⁴
Dielektriziätskonstante	@ 1 kHz	4,53	4,53

POLYURETHAN VERGUSSMASSE

TCR-J-PU-2C-LV-AR dispensierbar / 2 komponentig / niedrige Viskosität

TCR-J-PU-2C-LV-AR ist eine mit wärmeleitenden Füllstoffen formulierte, temperaturbeständige, additionsvernetzende 2 Komponenten Vergussmasse auf Polyurethan-Basis. Die Vergussmasse zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Verguss von elektrischen und elektronischen Bauteilen, wie Transformatoren, Kondensatoren, Spulen, Sensoren, LEDs und kann als Mehrzweckvergussmasse sowohl unter Normalbedingungen als auch im Vakuum vergossen werden. Durch das Fließverhalten ist es auch für den Verguss schwer zugänglicher Bauteilgeometrien geeignet.

EIGENSCHAFTEN

- Polyurethan
- Niedrige Viskosität
- Zweikomponentig additionsvernetzend
- Wärmeleitfähigkeit: 1,5 W/mK
- Minimale Spannungen auf Bauelemente
- Dispensier- oder vergießbar
- Lösungsmittelfrei
- ☐ Hohe Wasser- und Feuchtebeständigkeit
- ☐ Frei von halogenierten Flammschutzmitteln

LIEFERFORMEN

Weißblechgebinde

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- □ LED
- Akkus

z.B. in Automotiveanwendungen / Telekommunikation / Steuereinheiten / Industriecomputer

EIGENSCHAFT	EINHEIT	GIESSHARZ	HÄRTER	
MATERIAL		Polyurethan	Aromatisches Isocyanat	
Farbe	•••••	Natur	Braun	
Dichte @ 22°C	g/cm³	2,35 – 2,45	1,20 – 1,25	
Mischungsverhältnis	Gewicht		100 : 8	
Viskosität (@ 22°C, 10¹/min)	mPas	45.000 – 50.000	15 – 35	
Viskosität (gemischt, @ 22°C, 10¹/min)	mPas	••••	3.500 - 5.000	
Härte	Shore D	••••	40 – 50	
Zugfestigkeit	MPa		4	
Bruchdehnung	%		25	
Wasseraufnahme (30 Tage ดิ 23 °C)	%		0,2	
E-Modul	MPa		65	
Wärmeausdehnungskoeffizient < Tg, TMA > Tg, TMA	1 x 10 ⁻⁶ /K 1 x 10 ⁻⁶ /K		72,5 141,7	
Härtungsschrumpf	%		<1	
Topfzeit (100g @ 22°C / einstellbar)	Minuten	25 – 35		
Aushärtezeit @ 22°C / volle chemische Durchhärtung	h / Tage		16 – 30 / 10 – 14	
Haltbarkeit (ab Herstelldatum, ungeöffnet @ 15 – 25°C)	Monate		6	
Entflammbarkeit (Äquivalent)	UL 94		VO (1,5 mm)	
RoHS Konformität	2015 / 863 / EU		Ja	
Isolierstoffklasse	•••••		F	
TECHNISCH				
Thermische Leitfähigkeit	W/mK		1,5	
Betriebstemperaturbereich	°C		- 50 bis + 160	
Durchschlagsfestigkeit	kV/mm		28	
Durchgangswiderstand (@ 23°C, 50% r. F.)	Ohm-cm		1 x 10 ¹⁵	
Dielektriziätskonstante (Er)	@ 50 Hz/1 kHz/1 MHz @ 23°C		5,6 / 4,5 / 3,9	
Dielektrischer Verlustfaktor (tan δ)	@ 50 Hz @ 23°C		0,09	
Kriechstromfestigkeit (CTI)	•••••		600	

'ERGUSSMASSEN

POLYURETHAN VERGUSSMASSE

TCR-L-PU-2C-LV-AR dispensierbar / 2 komponentig / niedrige Viskosität

TCR-L-PU-2C-LV-AR ist eine mit wärmeleitenden Füllstoffen formulierte, temperaturbeständige, additionsvernetzende 2 Komponenten Vergussmasse auf Polyurethan-Basis. Die Vergussmasse zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Verguss von elektrischen und elektronischen Bauteilen, wie Transformatoren, Kondensatoren, Spulen, Sensoren, LEDs und kann als Mehrzweckvergussmasse sowohl unter Normalbedingungen als auch im Vakuum vergossen werden. Durch das Fließverhalten ist es auch für den Verguss schwer zugänglicher Bauteilgeometrien geeignet.

EIGENSCHAFTEN

- Polyurethan
- Niedrige Viskosität
- Zweikomponentig additionsvernetzend
- Wärmeleitfähigkeit: 2,1 W/mK
- ☐ Minimale Spannungen auf Bauelemente
- Dispensier- oder vergießbar
- Lösungsmittelfrei
- ☐ Hohe Wasser- und Feuchtebeständigkeit
- ☐ Frei von halogenierten Flammschutzmitteln

LIEFERFORMEN

Weißblechgebinde

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- □ LED
- □ Akkus

z.B. in Automotiveanwendungen / Telekommunikation / Steuereinheiten / Industriecomputer

EIGENSCHAFT	EINHEIT	GIESSHARZ	HÄRTER
MATERIAL		Polyurethan	Aromatisches Isocyanat
Farbe	•••••	Natur	Braun
Dichte @ 22°C	g/cm³	2,4 – 2,5	1,20 – 1,25
Mischungsverhältnis	Gewicht	• • • • • • • • • • • • • • • • • • • •	100 : 8
Viskosität (@ 22°C, 10¹/min)	mPas	100.000 – 120.000	15 – 35
Viskosität (gemischt, @ 22°C, 10¹/min)	mPas	•••••••	10.000 – 15.000
Härte	Shore D		50 – 60
Zugfestigkeit	MPa		6 – 8
Bruchdehnung	%	9 – 10	
E-Modul	MPa	55 – 60	
Härtungsschrumpf	%		<1
Topfzeit (100g @ 22°C / einstellbar)	Minuten		10 – 30
Aushärtezeit @ 22°C / volle chemische Durchhärtung	h / Tage		16 – 30 / 10 – 14
Haltbarkeit (ab Herstelldatum, ungeöffnet @ 15 – 25°C)	Monate		6
Entflammbarkeit (Äquivalent)	UL 94		V0 (4,0 mm)
RoHS Konformität	2015 / 863 / EU		Ja
Isolierstoffklasse	••••••••••		В
TECHNISCH			
Thermische Leitfähigkeit	W/mK		2,1
Betriebstemperaturbereich	°C		- 40 bis + 165
Durchschlagsfestigkeit	kV/mm		28
Durchgangswiderstand (@ 23°C, 50% r. F.)	Ohm-cm		1 x 10 ¹⁵
Dielektriziätskonstante (Er)	@ 50 Hz <mark>/</mark> 1 kHz <mark>/</mark> 1 MHz @ 23°C		5,5 / 4,5 / 3,9
Dielektrischer Verlustfaktor (tan δ)	@ 50 Hz @ 23°C	••••••	0,09
Kriechstromfestigkeit (CTI)	••••••	• • • • • • • • • • • • • • • • • • • •	600

POLYURETHAN VERGUSSMASSE TCR-N-PU-2C-LV-AR dispensierbar / 2 komponentig / niedrige Viskosität

TCR-N-PU-2C-LV-AR ist eine mit wärmeleitenden Füllstoffen formulierte, temperaturbeständige, additionsvernetzende 2 Komponenten Vergussmasse auf Polyurethan-Basis. Die Vergussmasse zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Verguss von elektrischen und elektronischen Bauteilen, wie Transformatoren, Kondensatoren, Spulen, Sensoren, LEDs und kann als Mehrzweckvergussmasse sowohl unter Normalbedingungen als auch im Vakuum vergossen werden. Durch das Fließverhalten ist es auch für den Verguss schwer zugänglicher Bauteilgeometrien geeignet.

EIGENSCHAFTEN

- Polyurethan
- Niedrige Viskosität
- Zweikomponentig additionsvernetzend
- Wärmeleitfähigkeit: 2,6 W/mK
- Minimale Spannungen auf Bauelemente
- □ Dispensier- oder vergießbar
- Lösungsmittelfrei
- Hohe Wasser- und Feuchtebeständigkeit
- ☐ Frei von halogenierten Flammschutzmitteln

LIEFERFORMEN

■ Weißblechgebinde

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- □ LED
- Akkus

z.B. in Automotiveanwendungen / Telekommunikation / Steuereinheiten / Industriecomputer

EIGENSCHAFT	EINHEIT	GIESSHARZ	HÄRTER	
MATERIAL		Polyurethan	Aromatisches Isocyanat	
Farbe	•••••	Natur	Braun	
Dichte @ 22°C	g/cm³	2,3 - 2,4	1,20 – 1,25	
Mischungsverhältnis	Gewicht	• • • • • • • • • • • • • • • • • • • •	100 : 8	
Viskosität (@ 22°C, 10¹/min)	mPas	100.000 – 140.000	15 – 35	
Viskosität (gemischt, @ 22°C, 10¹/min)	mPas		20.000 – 40.000	
Härte	Shore D	40 – 50		
Wasseraufnahme (30 Tage @ 23 °C)	%	0,4		
Wärmeausdehnungskoeffizient < Tg, TMA > Tg, TMA	1 x 10 ⁻⁶ /K 1 x 10 ⁻⁶ /K	91,4 129,1		
Härtungsschrumpf	%	<1		
Topfzeit (100g @ 22°C / einstellbar)	Minuten	10 – 30		
Aushärtezeit @ 22°C / volle chemische Durchhärtung	h <mark>/</mark> Tage	14 – 24 / 10 – 14		
Haltbarkeit (ab Herstelldatum, ungeöffnet @ 15 – 25°C)	Monate		6	
Entflammbarkeit (Äquivalent)	UL 94		V0 (4,0 mm)	
RoHS Konformität	2015 / 863 / EU		Ja	
Isolierstoffklasse	•••••	В		
TECHNISCH				
Thermische Leitfähigkeit	W/mK		2,6	
Betriebstemperaturbereich	°C		- 40 bis + 130	
Durchschlagsfestigkeit	kV/mm		31	
Durchgangswiderstand (@ 23°C, 50% r. F.)	Ohm-cm	1 x 10 ¹⁵		
Dielektriziätskonstante (Er)	@ 50 Hz/1 kHz/1 MHz @ 23°C	5,8 / 5,2 / 4,6		
Dielektrischer Verlustfaktor (tan δ)	@ 50 Hz @ 23°C		0,09	
Kriechstromfestigkeit (CTI)			600	

'ERGUSSMASSEN

POLYURETHAN VERGUSSMASSE

TCR-N-PU-2C-MV-AL dispensierbar / 2 komponentig / mittlere Viskosität

TCR-N-PU-2C-MV-AL ist eine mit wärmeleitenden Füllstoffen formulierte, temperaturbeständige, additionsvernetzende 2 Komponenten Vergussmasse auf Polyurethan-Basis. Die Vergussmasse zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Verguss von elektrischen und elektronischen Bauteilen, wie Transformatoren, Kondensatoren, Spulen, Sensoren, LEDs und kann als Mehrzweckvergussmasse sowohl unter Normalbedingungen als auch im Vakuum vergossen werden. Durch das Fließverhalten ist es auch für den Verguss schwer zugänglicher Bauteilgeometrien geeignet.

EIGENSCHAFTEN

- Polyurethan
- Mittlere Viskosität
- Zweikomponentig additionsvernetzend
- Wärmeleitfähigkeit: 2,6 W/mK
- Minimale Spannungen auf Bauelemente
- Dispensier- oder vergießbar
- Lösungsmittelfrei
- Hohe Wasser- und Feuchtebeständigkeit
- ☐ Frei von halogenierten Flammschutzmitteln

LIEFERFORMEN

Weißblechgebinde

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- □ LED
- Akkus

z.B. in Automotiveanwendungen / Telekommunikation / Steuereinheiten / Industriecomputer

EIGENSCHAFT	EINHEIT	GIESSHARZ	HÄRTER	
MATERIAL		Polyurethan	Aliphatisches Isocyanat	
Farbe	••••••	Natur	Transparent	
Dichte ଢ 22°C	g/cm³	2,3 - 2,4	1,10 – 1,15	
Mischungsverhältnis	Gewicht		100 : 9	
Viskosität (@ 22°C, 10¹/min)	mPas	110.000 – 130.000	450 – 750	
Viskosität (gemischt, ଢ 22°C, 10¹/min)	mPas		60.000 – 70.000	
Härte	Shore D		40 – 50	
Wasseraufnahme (30 Tage @ 23 °C)	%		0,4	
Wärmeausdehnungskoeffizient < Tg, TMA > Tg, TMA	1 x 10 ⁻⁶ /K 1 x 10 ⁻⁶ /K		137,9 162,0	
Härtungsschrumpf	%		<1	
Topfzeit (100g @ 22°C / einstellbar)	Minuten		Einstellbar	
Aushärtezeit @ 22°C / volle chemische Durchhärtung	h / Tage	•••••	12 – 24 / 10 – 14	
Haltbarkeit (ab Herstelldatum, ungeöffnet @ 15 – 25°C)	Monate		6	
Entflammbarkeit (Äquivalent)	UL 94		V0 (4,0 mm)	
RoHS Konformität	2015 / 863 / EU		Ja	
Isolierstoffklasse	••••••		В	
TECHNISCH				
Thermische Leitfähigkeit	W/mK		2,6	
Betriebstemperaturbereich	°C		- 40 bis + 130	
Durchschlagsfestigkeit	kV/mm		31	
Durchgangswiderstand (@ 23°C, 50% r. F.)	Ohm-cm		1 x 10 ¹⁵	
Dielektriziätskonstante (Er)	@ 50 Hz /1 kHz /1 MHz @ 23°C		5,8 / 5,2 / 4,6	
Dielektrischer Verlustfaktor (tan δ)	@ 50 Hz @ 23°C		0,09	
Kriechstromfestigkeit (CTI)	•••••		600	

 $Angaben\ unverbindlich,\ technische\ \ddot{A}nderungen\ vorbehalten.\ Bitte\ kontaktieren\ Sie\ uns\ f\"{u}r\ weitere\ Daten\ und\ Informationen.$

POLYURETHAN VERGUSSMASSE

TCR-R-PU-2C-LV-AR dispensierbar / 2 komponentig / niedrige Viskosität

TCR-R-PU-2C-LV-AR ist eine mit wärmeleitenden Füllstoffen formulierte, temperaturbeständige, additionsvernetzende 2 Komponenten Vergussmasse auf Polyurethan-Basis. Die Vergussmasse zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Verguss von elektrischen und elektronischen Bauteilen, wie Transformatoren, Kondensatoren, Spulen, Sensoren, LEDs und kann als Mehrzweckvergussmasse sowohl unter Normalbedingungen als auch im Vakuum vergossen werden. Durch das Fließverhalten ist es auch für den Verguss schwer zugänglicher Bauteilgeometrien geeignet.

EIGENSCHAFTEN

- Polyurethan
- Niedrige Viskosität
- Zweikomponentig additionsvernetzend
- Wärmeleitfähigkeit: 3,0 W/mK
- Minimale Spannungen auf Bauelemente
- □ Dispensier- oder vergießbar
- Lösungsmittelfrei
- ☐ Hohe Wasser- und Feuchtebeständigkeit
- ☐ Frei von halogenierten Flammschutzmitteln

LIEFERFORMEN

■ Weißblechgebinde

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- □ LED
- Akkus

z.B. in Automotiveanwendungen / Telekommunikation / Steuereinheiten / Industriecomputer

EIGENSCHAFT	EINHEIT	GIESSHARZ	HÄRTER	
MATERIAL		Polyurethan	Aromatisches Isocyanat	
Farbe	•••••	Natur	Braun	
Dichte @ 22°C	g/cm³	2,3 - 2,4	1,20 – 1,25	
Mischungsverhältnis	Gewicht	••••	100 : 8	
Viskosität (@ 22°C, 10¹/min)	mPas	110.000 – 150.000	15 – 35	
Viskosität (gemischt, @ 22°C, 10¹/min)	mPas		30.000 – 40.000	
Härte	Shore D		45 – 55	
Wasseraufnahme (30 Tage @ 23 °C)	%		0,4	
Wärmeausdehnungskoeffizient < Tg, TMA > Tg, TMA	1 x 10 ⁻⁶ /K 1 x 10 ⁻⁶ /K		73,9 125,3	
Härtungsschrumpf	%		<1	
Topfzeit (100g @ 22°C / einstellbar)	Minuten		10 – 30	
Aushärtezeit @ 22°C / volle chemische Durchhärtung	h <mark>/</mark> Tage		16 – 30 / 10 – 14	
Haltbarkeit (ab Herstelldatum, ungeöffnet @ 15 – 25°C)	Monate		6	
Entflammbarkeit (Äquivalent)	UL 94		VO (4,0 mm)	
RoHS Konformität	2015 / 863 / EU		Ja	
Isolierstoffklasse	•••••	В		
TECHNISCH				
Thermische Leitfähigkeit	W/mK		3,0	
Betriebstemperaturbereich	°C		- 40 bis + 130	
Durchschlagsfestigkeit	kV/mm		28	
Durchgangswiderstand (@ 23 °C, 50 % r. F.)	0hm-cm		1 x 10 ¹⁵	
Dielektriziätskonstante (Er)	@ 50 Hz <mark>/</mark> 1 kHz /1 MHz @ 23°C		5,5 / 4,5 / 3,9	
Dielektrischer Verlustfaktor (tan δ)	@ 50 Hz @ 23°C		0,09	
Kriechstromfestigkeit (CTI)			600	

 $Angaben\ unverbindlich,\ technische\ \ddot{A}nderungen\ vorbehalten.\ Bitte\ kontaktieren\ Sie\ uns\ f\"{u}r\ weitere\ Daten\ und\ Informationen.$

ERGUSSMASSEN

POLYURETHAN VERGUSSMASSE

TCR-R-PU-2C-MV-AL dispensierbar / 2 komponentig / mittlere Viskosität

TCR-R-PU-2C-MV-AL ist eine mit wärmeleitenden Füllstoffen formulierte, temperaturbeständige, additionsvernetzende 2 Komponenten Vergussmasse auf Polyurethan-Basis. Die Vergussmasse zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Verguss von elektrischen und elektronischen Bauteilen, wie Transformatoren, Kondensatoren, Spulen, Sensoren, LEDs und kann als Mehrzweckvergussmasse sowohl unter Normalbedingungen als auch im Vakuum vergossen werden. Durch das Fließverhalten ist es auch für den Verguss schwer zugänglicher Bauteilgeometrien geeignet.

EIGENSCHAFTEN

- Polyurethan
- Mittlere Viskosität
- Zweikomponentig additionsvernetzend
- ☐ Wärmeleitfähigkeit: 3,0 W/mK
- Minimale Spannungen auf Bauelemente
- Dispensier- oder vergießbar
- Lösungsmittelfrei
- ☐ Hohe Wasser- und Feuchtebeständigkeit
- ☐ Frei von halogenierten Flammschutzmitteln

LIEFERFORMEN

Weißblechgebinde

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- □ LED
- □ Akkus

z.B. in Automotiveanwendungen / Telekommunikation / Steuereinheiten / Industriecomputer

EIGENSCHAFT	EINHEIT	GIESSHARZ	HÄRTER	
MATERIAL		Polyurethan	Aliphatisches Isocyanat	
Farbe	••••••	Natur	Transparent	
Dichte @ 22°C	g/cm³	2,4 - 2,5	1,10 – 1,15	
Mischungsverhältnis	Gewicht	1	100 : 9	
Viskosität (@ 22°C, 10¹/min)	mPas	160.000 – 185.000	450 - 750	
Viskosität (gemischt, @ 22°C, 10¹/min)	mPas		30.000 – 90.000	
Härte	Shore D		40 – 50	
Wasseraufnahme (30 Tage @ 23 °C)	%	0,4		
Wärmeausdehnungskoeffizient < Tg, TMA > Tg, TMA	1 x 10 ⁻⁶ /K 1 x 10 ⁻⁶ /K		106,8 121,5	
Härtungsschrumpf	%	<1		
Topfzeit (100g @ 22°C / einstellbar)	Minuten		Einstellbar	
Aushärtezeit @ 22°C / volle chemische Durchhärtung	h / Tage	16 – 30 / 10 – 14		
Haltbarkeit (ab Herstelldatum, ungeöffnet @ 15 – 25°C)	Monate	6		
Entflammbarkeit (Äquivalent)	UL 94	VO (4,0 mm)		
RoHS Konformität	2015 / 863 / EU	Ja		
Isolierstoffklasse	•••••	В		
TECHNISCH				
Thermische Leitfähigkeit	W/mK		3,0	
Betriebstemperaturbereich	°C		- 40 bis + 130	
Durchschlagsfestigkeit	kV/mm		28	
Durchgangswiderstand (@ 23°C, 50% r. F.)	Ohm-cm		1 x 10 ¹⁵	
Dielektriziätskonstante (&r)	@ 50 Hz/1 kHz/1 MHz @ 23°C	Ę	5,5 / 4,5 / 3,9	
Dielektrischer Verlustfaktor (tan δ)	@ 50 Hz @ 23°C	(),09	
Kriechstromfestigkeit (CTI)		C	500	

 $Angaben\ unverbindlich,\ technische\ \ddot{A}nderungen\ vorbehalten.\ Bitte\ kontaktieren\ Sie\ uns\ f\"{u}r\ weitere\ Daten\ und\ Informationen.$

POLYURETHAN VERGUSSMASSE TCR-V-PU-2C-MV-AR dispensierbar / 2 komponentig / mittlere Viskosität

TCR-V-PU-2C-MV-AR ist eine mit wärmeleitenden Füllstoffen formulierte, temperaturbeständige, additionsvernetzende 2 Komponenten Vergussmasse auf Polyurethan-Basis. Die Vergussmasse zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Verguss von elektrischen und elektronischen Bauteilen, wie Transformatoren, Kondensatoren, Spulen, Sensoren, LEDs und kann als Mehrzweckvergussmasse sowohl unter Normalbedingungen als auch im Vakuum vergossen werden. Durch das Fließverhalten ist es auch für den Verguss schwer zugänglicher Bauteilgeometrien geeignet.

EIGENSCHAFTEN

- Polyurethan
- Mittlere Viskosität
- Zweikomponentig additionsvernetzend
- Wärmeleitfähigkeit: 3,5 W/mK
- Minimale Spannungen auf Bauelemente
- Dispensier- oder vergießbar
- Lösungsmittelfrei
- Hohe Wasser- und Feuchtebeständigkeit
- ☐ Frei von halogenierten Flammschutzmitteln

LIEFERFORMEN

■ Weißblechgebinde

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- LED
- Akkus

z.B. in Automotiveanwendungen / Telekommunikation / Steuereinheiten / Industriecomputer

EIGENSCHAFT	EINHEIT	GIESSHARZ	HÄRTER	
MATERIAL		Polyurethan	Aromatisches Isocyanat	
Farbe	•••••	Natur	Braun	
Dichte @ 22°C	g/cm³	2,1 – 2,3	1,20 – 1,25	
Mischungsverhältnis	Gewicht	1	00 : 7	
Viskosität (@ 22°C, 10¹/min)	mPas	100.000 – 130.000	15 – 35	
Viskosität (gemischt, @ 22°C, 10¹/min)	mPas	61	0.000 – 100.000	
Härte	Shore D	2	20 – 30	
Wasseraufnahme (30 Tage @ 23 °C)	%	0,	4	
Wärmeausdehnungskoeffizient < Tg, TMA > Tg, TMA	1 x 10 ⁻⁶ /K 1 x 10 ⁻⁶ /K	131,5 157,4		
Härtungsschrumpf	%	<1		
Topfzeit (100g @ 22°C / einstellbar)	Minuten	10 – 30		
Aushärtezeit @ 22°C / volle chemische Durchhärtung	h / Tage	16 – 30 / 10 – 14		
Haltbarkeit (ab Herstelldatum, ungeöffnet @ 15 – 25°C)	Monate	6		
Entflammbarkeit (Äquivalent)	UL 94	V0 (4,0 mm)		
RoHS Konformität	2015 / 863 / EU	Ja		
Isolierstoffklasse	•••••	В		
TECHNISCH				
Thermische Leitfähigkeit	W/mK	3,	3,5	
Betriebstemperaturbereich	°C	- 30 bis + 130		
Durchschlagsfestigkeit	kV/mm	2	28	
Durchgangswiderstand (@ 23°C, 50% r. F.)	0hm-cm	1	1 x 10 ¹⁵	
Dielektriziätskonstante (Er)	@ 50 Hz /1 kHz /1 MHz @ 23°C	5,5 / 4,5 / 3,9		
Dielektrischer Verlustfaktor (tan δ)	@ 50 Hz @ 23°C	0,09		
Kriechstromfestigkeit (CTI)	•••••	6	00	

Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

FRGUSSMASSEN

POLYURETHAN VERGUSSMASSE

TCR-V-PU-2C-HV-AL dispensierbar / 2 komponentig / hohe Viskosität

TCR-V-PU-2C-HV-AL ist eine mit wärmeleitenden Füllstoffen formulierte, temperaturbeständige, additionsvernetzende 2 Komponenten Vergussmasse auf Polyurethan-Basis. Die Vergussmasse zeichnet sich durch sehr gute elektrische und mechanische Eigenschaften aus. Das Material eignet sich zum Verguss von elektrischen und elektronischen Bauteilen, wie Transformatoren, Kondensatoren, Spulen, Sensoren, LEDs und kann als Mehrzweckvergussmasse sowohl unter Normalbedingungen als auch im Vakuum vergossen werden. Durch das Fließverhalten ist es auch für den Verguss schwer zugänglicher Bauteilgeometrien geeignet.

EIGENSCHAFTEN

- Polyurethan
- Hohe Viskosität
- Zweikomponentig additionsvernetzend
- ☐ Wärmeleitfähigkeit: 3,5 W/mK
- ☐ Minimale Spannungen auf Bauelemente
- Dispensier- oder vergießbar
- Lösungsmittelfrei
- ☐ Hohe Wasser- und Feuchtebeständigkeit
- ☐ Frei von halogenierten Flammschutzmitteln

LIEFERFORMEN

Weißblechgebinde

ANWENDUNGSBEISPIELE

Thermische Anbindung von z.B.

- Induktivitäten
- Kapazitäten
- □ LED
- □ Akkus

z.B. in Automotiveanwendungen / Telekommunikation / Steuereinheiten / Industriecomputer

EIGENSCHAFT	EINHEIT	GIESSHARZ	HÄRTER	
MATERIAL		Polyurethan	Aliphatisches Isocyanat	
Farbe	•••••	Natur	Transparent	
Dichte ଢ 22 °C	g/cm³	2,1 – 2,3	1,10 – 1,15	
Mischungsverhältnis	Gewicht	1	00 : 9	
Viskosität (@ 22°C, 10¹/min)	mPas	150.000 – 200.000	450 – 750	
Viskosität (gemischt, ເປີ 22°C, 10¹/min)	mPas	1	10.000 - 130.000	
Härte	Shore D		5 – 45	
Wasseraufnahme (30 Tage @ 23 °C)	%		,4	
Wärmeausdehnungskoeffizient < Tg, TMA > Tg, TMA	1 x 10 ⁻⁶ /K 1 x 10 ⁻⁶ /K		56,2 87,9	
Härtungsschrumpf	%	<1		
Topfzeit (100g @ 22°C / einstellbar)	Minuten		0 – 50	
Aushärtezeit @ 22°C / volle chemische Durchhärtung	h <mark>/</mark> Tage	1	6 - 30 / 10 - 14	
Haltbarkeit (ab Herstelldatum, ungeöffnet @ 15 – 25°C)	Monate	6		
Entflammbarkeit (Äquivalent)	UL 94	VO (5,6 mm)		
RoHS Konformität	2015 / 863 / EU	Ja		
Isolierstoffklasse	***************************************	В	3	
TECHNISCH				
Thermische Leitfähigkeit	W/mK	3	,5	
Betriebstemperaturbereich	°C	-	- 40 bis + 130	
	kV/mm		8	
Durchgangswiderstand (@ 23°C, 50% r. F.)	Ohm-cm		1 x 10 15	
Dielektriziätskonstante (Er)	@ 50 Hz/1 kHz/1 MHz @ 23°C	5	,5 / 4,5 / 3,9	
Dielektrischer Verlustfaktor (tan δ)	@ 50 Hz @ 23°C	0	,09	
Kriechstromfestigkeit (CTI)		6	00	

Angaben unverbindlich, technische Änderungen vorbehalten. Bitte kontaktieren Sie uns für weitere Daten und Informationen.

HALBLEITERKLAMMER TO-220-1

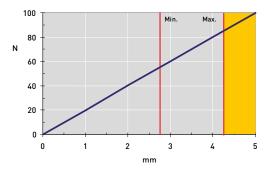
Die Einfach-Schraubklammer HALA Clip TO 220-1 dient der federnden Befestigung und dem zuverlässigen Andruck von Halbleitern in TO 220 Gehäusen oder mit vergleichbaren Abmessungen an Kühlflächen. Die Fixierung der Klammer geschieht mittels einer M4-Schraube. Durch die spezielle Formgebung wird ein optimales Biegeverhalten in einem großen Arbeitsbereich erreicht und Überbeanspruchungen des Werkstoffes innerhalb der zulässigen Streckung vermieden. Die für die passende Druckaufbringung erforderlichen Kräfte werden auch bei maximalen TO 220 Bauteiltoleranzen erzeugt. Durch die besondere Geometrie wirken die Federkräfte konzentriert auf die Halbleiterböden, so dass die Kontaktfläche maximiert und der thermische Widerstand minimiert werden. Durch spezielle Oberfächenbehandlung ist die Klammer gegen Korrosion geschützt.

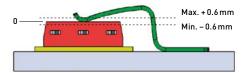
EIGENSCHAFTEN

- Befestigung mit M4-Schraube
- Durch FE-Simulation optimiertes Biegeverhalten
- Montagefreundliche Form
- ☐ Ausreichender Druck auch bei minimaler Bauteilhöhe (ca. 3,5 mm bei TO 220)
- Korrosionsgeschützt durch Delta Seal-Oberflächenbehandlung
- Chipidentifikation durch Ausschnitt

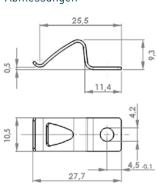
ARBEITSBEREICH

- ☐ Kraftbereich: ca. 55...85 N
- ☐ Druckbereich:
- ca. 35...55 N/cm² bei verschiedenen TO 220 Gehäusen (Fläche TO 220 ca. 1,6 cm²)


ANWENDUNGSBEISPIELE


Befestigung von Halbleitern mit TO 220 und vergleichbaren Gehäusen auf Kühlflächen

z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Solartechnik / Abmessungen



Kraft-Weg-Diagramm

Abmessungen

HALBLEITERKLAMMER TO-247-1

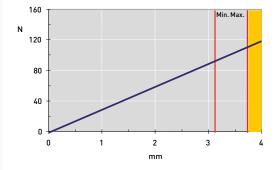
Die Einfach-Schraubklammer HALA Clip TO 247-1 dient der federnden Befestigung und dem zuverlässigen Andruck von Halbleitern in TO 247 Gehäusen oder mit vergleichbaren Abmessungen an Kühlflächen. Die Fixierung der Klammer geschieht mittels einer M4-Schraube. Durch die spezielle Formgebung wird ein optimales Biegeverhalten in einem großen Arbeitsbereich erreicht und Überbeanspruchungen des Werkstoffes innerhalb der zulässigen Streckung vermieden. Die für die passende Druckaufbringung erforderlichen Kräfte werden auch bei maximalen TO 247 Bauteiltoleranzen erzeugt. Durch die besondere Geometrie wirken die Federkräfte konzentriert auf die Halbleiterböden, so dass die Kontaktfläche maximiert und der thermische Widerstand minimiert werden. Durch spezielle Oberfächenbehandlung ist die Klammer gegen Korrosion geschützt.

EIGENSCHAFTEN

- ☐ Befestigung mit M4-Schraube
- Durch FE-Simulation optimiertes Biegeverhalten
- Montagefreundliche Form
- ☐ Ausreichender Druck auch bei minimaler Bauteilhöhe (ca. 4,7 mm bei TO 247)
- Korrosionsgeschützt durch Delta Seal-Oberflächenbehandlung
- Chipidentifikation durch Ausschnitt

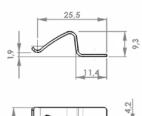
ARBEITSBEREICH

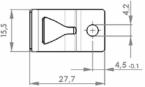
- Kraftbereich:ca. 95...110 N
- □ Druckbereich: ca. 28...35 N/cm² bei verschiedenen TO 247 Gehäusen (Fläche TO 247 ca. 3,4 cm²)


ANWENDUNGSBEISPIELE

Befestigung von Halbleitern mit TO 247 und vergleichbaren Gehäusen auf Kühlflächen:

- MOSFETs
- □IGBTs
- Dioden
- z.B. in Wechselrichtern und Stromversorgungen / USV Einrichtungen / Motorsteuerungen / Automotiveanwendungen




Kraft-Weg-Diagramm

0 Max. + 0.3 mm Min. - 0.3 mm

Abmessungen

IMPRESSUM

KONTAKT

HALA Contec GmbH & Co. KG / Siemensstraße 5 / D-85521 Ottobrunn Fon +49 89 665 477-83 / Fax +49 89 665 477-85 / contec @ hala-tec.de / www.hala-tec.de

BILDNACHWEIS

shutterstock: S. 1, 7, 9 und Materialien-Deckblätter, istockphoto: S. 12, zoodesign: S. 10, 11, 14 und Materialienfotos

DESIGN

zoodesign – artgerechte gestaltung / D-73525 schwäbisch gmünd / www.zoodesign.de


HAFTUNGSAUSSCHLUSS

Unsere technischen Angaben und Daten erfolgen nach bestem Wissen entsprechend dem aktuellen Stand der Technik und stellen lediglich unverbindliche Informationen in Bezug auf die Produkteignung in einer Applikation sowie etwaige Schutzrechte Dritter dar. Sie befreien nicht von der Durchführung eigener Prüfungen. Verwendung und Verarbeitung der Produkte liegen außerhalb unserer Kontrolle und sind im Verantwortungsbereich des Anwenders. Änderungen der Angaben bleiben vorbehalten.

Stand 3 / 2021

