HEATPIPE MODULES
THERMAL MANAGEMENT
TUBULAR / FLATTENED HEAT PIPES & VAPOR CHAMBERS FOR HEAT TRANSFER & HEAT SPREADING
HEATPIPE MODULES
THERMAL MANAGEMENT
MAKING YOUR HEATPIPE MODULES MOST EFFICIENT AND THERMALLY BEST

TUBULAR-/ VAPOR CHAMBER PLANAR HEAT PIPES
HALA supplies 2 Phase Modules of two basic configurations: Tubular Heat Pipes and Vapor Chamber Planar Heat Pipes.

HEAT PIPES
- Outer diameter: From 2.0 mm up to and over 50 mm
- Internal structures: sintered, mesh, groove or hybrid (sintered-groove)
- Cross section geometry: round, rectangular, flattened
- Flattening down to 0.4 mm
- Length: up to 70 cm
- Geometry: straight or multiple bends
- Bonding of heat pipes to the assembly: soldering, press fit, epoxy
- Heat pipe surface coating: nickel or tin plated

All copper/water heat pipes are designed to survive numerous freeze/thaw cycles without any degradation. Copper/water heat pipes are made of copper, use water as a working fluid and typically operate in the temperature range of 20 up to 150°C (and over). The planar heat pipes are called Vapor Chambers (VC) which are used as heat spreaders.

Copper/water 2 phase systems can be combined with other components to form heat transfer modules:
- Extruded heat sinks
- Die cast heat sinks
- Fin Stack heat sinks
- Skived heat sinks

Connected by:
- Thermal Interface Materials

DIMENSION AND PERFORMANCE RANGE (mm)

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Recommended Overall Length</th>
<th>Recommended Bending Radius</th>
<th>Recommended Flattened Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>70 – 750</td>
<td>>9</td>
<td>>2.0</td>
</tr>
<tr>
<td>4</td>
<td>70 – 750</td>
<td>>12</td>
<td>>2 [e.g. 2.4]</td>
</tr>
<tr>
<td>5</td>
<td>70 – 750</td>
<td>>15</td>
<td>>2 [e.g. 3.0]</td>
</tr>
<tr>
<td>6</td>
<td>70 – 750</td>
<td>>18</td>
<td>>2.5 [e.g. 3.6]</td>
</tr>
<tr>
<td>6.35 (¼")</td>
<td>70 – 750</td>
<td>>19</td>
<td>>2.5 [e.g. 3.5]</td>
</tr>
<tr>
<td>8</td>
<td>70 – 750</td>
<td>>24</td>
<td>>3 [e.g. 4.0]</td>
</tr>
<tr>
<td>9.52 (⅜")</td>
<td>70 – 750</td>
<td>>28.6</td>
<td>>3 [e.g. 4.5]</td>
</tr>
<tr>
<td>10</td>
<td>70 – 750</td>
<td>>30</td>
<td>>3 [e.g. 5.0]</td>
</tr>
<tr>
<td>12</td>
<td>70 – 750</td>
<td>>36</td>
<td>>3 [e.g. 6.0]</td>
</tr>
<tr>
<td>12.7 (½")</td>
<td>70 – 750</td>
<td>>38</td>
<td>>3 [e.g. 6.3]</td>
</tr>
<tr>
<td>15.875 (⅜")</td>
<td>70 – 750</td>
<td>>47</td>
<td>>3 [e.g. 8.0]</td>
</tr>
<tr>
<td>19.05 (¾")</td>
<td>70 – 750</td>
<td>>57</td>
<td>>3 [e.g. 9.5]</td>
</tr>
<tr>
<td>25.4 (1")</td>
<td>70 – 750</td>
<td>>76</td>
<td>>3 [e.g. 12.0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Qmax (w)</th>
<th>Pipe Diameter ø 3 mm</th>
<th>Pipe Diameter ø 4 mm</th>
<th>Pipe Diameter ø 5 mm</th>
<th>Pipe Diameter ø 6 mm</th>
<th>Pipe Diameter ø 8 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 2.0 mm</td>
<td>10 W</td>
<td>15 W</td>
<td>21 W</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>T = 2.5 mm</td>
<td>14 W</td>
<td>17 W</td>
<td>32 W</td>
<td>46 W</td>
<td>65 W</td>
<td></td>
</tr>
<tr>
<td>T = 3.0 mm</td>
<td>15 W</td>
<td>19 W</td>
<td>42 W</td>
<td>56 W</td>
<td>75 W</td>
<td></td>
</tr>
<tr>
<td>Rounded</td>
<td>16 W</td>
<td>20 W</td>
<td>46 W</td>
<td>60 W</td>
<td>85 W</td>
<td></td>
</tr>
</tbody>
</table>

Diameter: 3 / 4 / 5 / 6 / 6.35 (¼") / 8 / 9.52 (⅜") / 10 / 12 / 12.7 (½")
Tube Wall Thickness: 0.9 mm / 0.5 mm / 0.3 mm / 0.2 mm
Diameter Tolerance: ±0.05 mm
Length Tolerance: ±0.5 to ±1.0 mm
Thickness Tolerance: ±0.05 mm
Width Tolerance: ±0.10 to ±0.15 mm
HEATPIPE MODULES
CONFIGURATIONS
HALA HEATPIPES

FLATTENED HEAT PIPES

VAPOR CHAMBER
a. interior structure and sealed
b. with copper sockets

HEAT SPREADER

HEAT COLUMN

HEAT TRANSFER

HALA Contec GmbH & Co. KG / Hans-Böckler-Straße 15 / D-73230 Kirchheim u.T. / Fon +49 7021 73141-0 / Fax +49 7021 73141-99 / contec@hala-tec.de / www.hala-tec.de

All technical data and information are without warranty and believed to be reliable and accurate corresponding to the latest state of the art. Since the products are not provided to conform with mutually agreed specifications and their use and processing are unknown we cannot guarantee results, freedom from patent infringement, or their suitability for any application. Product testing by the applicant is recommended. We reserve the right of changes.
HEATPIPE MODULES
APPLICATION CASES

ELECTRONICS COOLING
LED COOLING
AVIONICS / AIRBORNE ELECTRONICS
DESKTOP / NOTEBOOK / SERVER
HVAC ENERGY RECOVERY
ANALYZERS AND METERS
MEDICAL DEVICES
MILITARY / AEROSPACE
SAFETY TECHNOLOGY
CAMERA & SURVEILLANCE SYSTEMS
PHOTOVOLTAICS
SENSOR CONTROL
AUTOMOTIVE
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/</td>
<td>NO. OF HEAT SOURCES</td>
<td>No. of heat sources and hot spots to be cooled</td>
</tr>
<tr>
<td>2/</td>
<td>OPERATING POWER</td>
<td>Maximum total power demand</td>
</tr>
<tr>
<td>3/</td>
<td>DIMENSIONS OF HEAT SOURCES</td>
<td>Heat input area</td>
</tr>
<tr>
<td>4/</td>
<td>HEAT SOURCE LAYOUT</td>
<td>Hot spots can be off-center, sketch of positions</td>
</tr>
<tr>
<td>5/</td>
<td>MAXIMUM VC DIMENSIONS</td>
<td>Max. allowable function length and width</td>
</tr>
<tr>
<td>6/</td>
<td>OPERATING ORIENTATION</td>
<td>Angle from horizontal (positive if downside evaporator)</td>
</tr>
<tr>
<td>7/</td>
<td>MAX. COMPONENT TEMPERATURE</td>
<td>Maximum temperature requirement for multiple components</td>
</tr>
<tr>
<td>8/</td>
<td>AMBIENT TEMPERATURE</td>
<td>Operating temperature range</td>
</tr>
<tr>
<td>9/</td>
<td>STORAGE TEMPERATURE</td>
<td>Storage temperature range</td>
</tr>
<tr>
<td>10/</td>
<td>COOLING</td>
<td>Heat sink with forced convection (flow rate), natural convection or liquid cooling</td>
</tr>
<tr>
<td>11/</td>
<td>SURFACE REQUIREMENTS</td>
<td>Evenesses, roughness, plated, unplated, sealed, etc.</td>
</tr>
<tr>
<td>12/</td>
<td>NOTES</td>
<td>Performance specifications, drawings, sketches, special requirements, etc.</td>
</tr>
</tbody>
</table>
HEATPIPE & HEATPIPE ASSEMBLY CHECKLIST

FILL IN YOUR DATA AND SEND BACK TO US

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/ OPERATING POWER</td>
<td>Watts</td>
</tr>
<tr>
<td>2/ HEAT PIPE LENGTH</td>
<td>mm</td>
</tr>
<tr>
<td>3/ EVAPORATOR DIMENSIONS</td>
<td>(LxWxT)</td>
</tr>
<tr>
<td>4/ CONDENSOR DIMENSIONS</td>
<td>(LxWxT)</td>
</tr>
<tr>
<td>5/ HEAT SINK DIMENSIONS</td>
<td>(LxWxT)</td>
</tr>
<tr>
<td>6/ OPERATING ORIENTATION</td>
<td>°C</td>
</tr>
<tr>
<td>7/ MAX. COMPONENT TEMPERATURE</td>
<td>°C to °C</td>
</tr>
<tr>
<td>8/ AMBIENT TEMPERATURE</td>
<td>°C to °C</td>
</tr>
<tr>
<td>9/ STORAGE TEMPERATURE</td>
<td>°C to °C</td>
</tr>
<tr>
<td>10/ COOLING</td>
<td></td>
</tr>
<tr>
<td>11/ SURFACE REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>12/ NOTES</td>
<td></td>
</tr>
</tbody>
</table>